Skip to main content

Simple Computation of the Eigencomponents of a Subdivision Matrix in the Fourier Domain

  • Conference paper
Book cover Advances in Multiresolution for Geometric Modelling

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Summary

After demonstrating the necessity and the advantage of decomposing the subdivision matrix in the frequency domain when analysing a subdivision scheme, we present a general framework based on a method, introduced by Ball and Storry, which computes the Discrete Fourier Transform of a subdivision matrix. The efficacy of the technique is illustrated by performing the analysis of Kobbelt's \(\sqrt 3 \) scheme in a very simple manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ball, A.A., Storry, D.J.T.: Conditions for tangent plane continuity over recursiveley generated B-spline surfaces. ACM Trans. Graphics, 7(2):83–102 (1988)

    Article  Google Scholar 

  2. de Boor, C., Hollig, D., Riemenschneider, S.: Box Splines. Springer-Verlag, New York (1994).

    Google Scholar 

  3. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 10(6):350–355 (1978)

    Article  Google Scholar 

  4. Dodgson N.A., Ivrissimtzis, I.P., Sabin, M.A.: Characteristics of dual triangular \(\sqrt 3 \) subdivision. Curve and Surface Fitting: Saint-Malo 2002, Nashboro Press, Brentwood, 119–128 (2003)

    Google Scholar 

  5. Doo, D., Sabin, M.A.: Analysis of the behaviour of recursive subdivision surfaces near extraordinary points. Computer Aided Design, 10(6):356–360 (1978)

    Article  Google Scholar 

  6. Dyn, N.: Subdivision schemes in Computer-Aided Geometric Design. Advances in Numerical Analysis II: Wavelets, Subdivision Algorithms and Radial Basis Functions, W. Light (ed.), Clarendon Press, Oxford, 36–104 (1992)

    Google Scholar 

  7. Dyn, N.: Analysis of convergence and smoothness by the formalism of Laurent polynomials. Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak and M. Floater (eds.), Springer, 51–68 (2002)

    Google Scholar 

  8. Dyn, N., Levin, D., Gregory, J.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Trans. Graphics, 9(2):160–169 (1990)

    Article  Google Scholar 

  9. Farin, G.: Curves and Surfaces for CAGD. 5th Edition, Academic Press (2002)

    Google Scholar 

  10. Kobbelt, L.: \(\sqrt 3 \)-Subdivision. Proc. ACM SIGGRAPH 2000, 103–112 (2000)

    Google Scholar 

  11. Loop, C.: Smooth subdivision surfaces based on triangles. Master's thesis, University of Utah (1987)

    Google Scholar 

  12. Peters, J., Reif, U.: Analysis of algorithms generalizing B-spline subdivision. SIAM Journal of Num. Anal., 35(2):728–748 (1998)

    Article  MathSciNet  Google Scholar 

  13. Prautzsch, H.: Analysis of Ck-Subdivision surfaces at extraordinary points. Technical Report 98/4, Fakultät für Informatik, University of Karlsruhe, Germany (1998)

    Google Scholar 

  14. Prautzsch, H., Umlauf, G.: A G2-subdivision algorithm. Geometric Modelling, Dagstuhl 1996, Computing supplement 13, Springer-Verlag, 217–224 (1998)

    Google Scholar 

  15. Reif, U.: A unified approach to subdivision algorithms near extraordinary vertices. Computer Aided Design, 12:153–174 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sabin, M.A.: Eigenanalysis and artifacts of subdivision curves and surfaces. Tutorials on Multiresolution in Geometric Modelling, A. Iske, E. Quak and M. Floater (ed.), Springer, 69–97 (2002)

    Google Scholar 

  17. Stam, J.: Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. Proc. ACM SIGGRAPH '98, 395–404 (1998)

    Google Scholar 

  18. Warren, J., Weimer, H.: Subdivision methods for geometric design: A constructive approach. San Francisco: Morgan Kaufman, (2002)

    Google Scholar 

  19. Zorin, D.: Stationary subdivision and multiresolution surface representations. PhD thesis, Caltech, Pasadena, California (1997)

    Google Scholar 

  20. Zorin, D.: A method for analysis of C1-continuity of subdivision surfaces. SIAM Journal of Num. Anal., 35(5):1677–1708 (2000)

    Article  MathSciNet  Google Scholar 

  21. Zorin, D., Schröder, P: Subdivision for modeling and animation. SIGGRAPH 2000 Course Notes. (2000)

    Google Scholar 

  22. Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. Proc. ACM SIGGRAPH '97, 189–192 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barthe, L., Gérot, C., Sabin, M., Kobbelt, L. (2005). Simple Computation of the Eigencomponents of a Subdivision Matrix in the Fourier Domain. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (eds) Advances in Multiresolution for Geometric Modelling. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26808-1_13

Download citation

Publish with us

Policies and ethics