Skip to main content

Ionospheric Plasma Effects for Geomagnetic LEO Missions at Mid- and Low-Latitudes

  • Chapter
  • 1431 Accesses

Summary

Some of the main plasma characteristics are reviewed that a LEO satellite with high orbital inclination encounters during its travel across the terrestrial ionosphere of mid- and low-latitudes. It is the region of highest plasma density in the near-Earth environment. Its properties are predominantly ruled by the geomagnetic field. It will be shown how different ionospheric layers — first of all the E- and F-layer — contribute in different ways to the electrodynamic and thermodynamic behaviour of the highly interacting, complex system comprising the ionosphere, thermosphere, and plasmasphere. The physical description of its phenomena and data interpretation have nowadays to rely to a substantial part on numerical methods and models. New observational methods and space missions have essentially contributed to the recent progress in this field. The CHAMP mission takes part in this progress just as much as the IMAGE, TIMED, and other satellite projects as well as ground-based observation programs. The paper summarises recent developments in ionospheric studies as, e.g., the plasma transport at mid- and low-latitudes, the regular Sq-dynamo and the contribution of the F — region dynamo, the interhemispheric coupling by current systems and plasma flows, pulsations, the equatorial electrojet and the plasma fountain effect, the Appleton anomaly, the near-equatorial plasma bubbles, and further open issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benson RF et al. (1998) Magnetospheric radio sounding on the IMAGE mission. Radio Sci Bull 285: 9–20.

    Google Scholar 

  2. Fejer BG (1997) The electrodynamics of the low-latitude ionosphere: Recent results and future challenges. J Atmos Solar-Terr Phys 59: 1465–1482.

    Article  Google Scholar 

  3. Förster M and Jakowski N (2000) Geomagnetic storm effects on the topside ionosphere and plasmasphere: A compact tutorial and new results. Surveys in Geophys 21: 47–87.

    Article  Google Scholar 

  4. Fuller-Rowell TJ, Codrescu MV, Fejer BG, Borer W, Marcos FA, and Anderson DN (1997) Dynamics of the low-latitude thermosphere: quiet and disturbed conditions. J Atmos Solar-Terr Phys 59: 1533–1540.

    Article  Google Scholar 

  5. Jakowski N (1996) TEC monitoring by using satellite positioning systems. In: Kohl H, Rüster R, and Schlegel K, eds, Modern Ionospheric Science, European Geophysical Society, Katlenburg-Lindau, ProduServ GmbH Verlagsservice, Berlin: 371–390.

    Google Scholar 

  6. Kamide Y et al. (1997) Magnetic storms: Current understanding and outstandig questions. In: Magnetic storms, Geophysical Monograph 98, American Geophysical Union: 1–19.

    Google Scholar 

  7. Kelley MC (1989) The Earth's Ionosphere: Plasma Physics and Electrodynamics, International Geophysics Series 43 Academic Press, Inc, with contributions from Heelis RA.

    Google Scholar 

  8. Kelley MC et al. (2003) The first coordinated ground-and space-based optical observations of equatorial plasma bubbles. Geophys Res Lett 30(14): 1766, doi:10.1029/2003GL017301.

    Article  Google Scholar 

  9. Kil H et al. (2003) Case study of the 15 July 2000 magnetic storm effects on the ionosphere-driver of the positive ionospheric storm in the winter hemisphere. J Geophys Res 108(A11): 1391, doi:10.1029/2002JA009782.

    Article  Google Scholar 

  10. Lemaire JF and Gringauz KI (1998) The Earth's Plasmasphere. Cambridge University Press, with contributions from Carpenter DL and Bassolo V.

    Google Scholar 

  11. Lühr H, Förster M, Reigber C, König R, Namgaladze AA, and Yurik RY (1998) Monitoring thermospheric density variations with the CHAMP satellite. In: Proc 'space Weather’ Workshop, ESTEC: 249–252.

    Google Scholar 

  12. Lühr H, Maus S, Rother M, and Cooke D (2002) First in-situ observation of night-time F region currents with the CHAMP satellite. Geophys Res Lett 29(10): 1489, doi: 10.1029/2001GL013845.

    Article  Google Scholar 

  13. Lühr H, Rother M, Maus S, Mai W, and Cooke D (2003) The diamagnetic effect of the equatorial Appleton anomaly: Its characteristics and impact on geomagnetic field modeling. Geophys Res Lett 30(17): 1906, doi: 10.1029/2003GL017407.

    Article  Google Scholar 

  14. Matsushita S (1969) Dynamo currents, winds, and electric fields. Radio Sci 4:771–780.

    Google Scholar 

  15. Meier RR et al. (2002) Ionospheric and dayglow responses to the radiative phase of the Bastille Day flare. Geophys Res Lett 29(10): 1461, doi: 10.1029/2001GL013956.

    Article  Google Scholar 

  16. Namgaladze AA, Förster M, and Yurik RY (2000) Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model. Ann Geophys 18: 461–477.

    Article  Google Scholar 

  17. Prölss GW (1997) Magnetic storm associated perturbations of the upper atmosphere. In: Magnetic storms, Geophysical Monograph 98, American Geophysical Union: 227–241.

    Google Scholar 

  18. Richmond AD (1976) Electric field in the ionosphere and plasmasphere on quiet days. J Geophys Res 81: 1447–1450.

    Google Scholar 

  19. Rishbeth H (1981) The F region dynamo. J Atmos Terr Phys 43: 387–392.

    Article  Google Scholar 

  20. Scherliess L and Fejer BG (1999) Radar and satellite global equatorial F region vertical drift model. J Geophys Res 104: 6829–6842.

    Article  Google Scholar 

  21. Schunk RW (1983) The Terrestrial Ionosphere. D Reidel Publishing Company: 609–676.

    Google Scholar 

  22. Wagner CU, Möhlmann D, Schäfer K, Mishin VM, and Matveev MI (1980) Large-scale electric fields and currents and related geomagnetic variations in the quiet plasmasphere. Space Science Reviews 26: 391–446.

    Article  Google Scholar 

  23. Whalen JA (2000) An equatorial bubble: Its evolution observed in relation to bottomside spread F and to the Appleton anomaly. J Geophys Res 105(A3):5303–5315.

    Article  Google Scholar 

  24. Zhang Y et al. (2003) Negative ionospheric storms seen by the IMAGE FUV instrument. J Geophys Res 108(A9): 1343, doi:10.1029/2002JA009797.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Förster, M., Rother, M., Lühr, H. (2005). Ionospheric Plasma Effects for Geomagnetic LEO Missions at Mid- and Low-Latitudes. In: Reigber, C., Lühr, H., Schwintzer, P., Wickert, J. (eds) Earth Observation with CHAMP. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26800-6_38

Download citation

Publish with us

Policies and ethics