Skip to main content

Ice Mass Balance and Antarctic Gravity Change: Satellite and Terrestrial Perspectives

  • Chapter
Earth Observation with CHAMP

Summary

Recent advances in the spatial and temporal retrieval of land-based cryospheric change information south of 42.5° allow fairly robust construction of forward model predictions of the time-rate of change in gravity. A map-view prediction is presented for the time-rate of change in geoid, dN/dt that might be retrieved from the currently orbiting gravity space craft, CHAMP (Challenging Mini-Satellite Payload for Geophysical Research and Application) and/or GRACE (Gravity Recovery and Climate Experiment). Complementary computation of the surface gravity change, dδg/dt, is also presented. The latter can be recovered from terrestrial absolute gravity measurements. Also, the computed rate of change Stokes coefficients for degree and order l, m 1–12 may be used as reliable estimates of the Southern Hemisphere cryospheric change contribution to the global low-degree harmonic variability recorded in multidecadal satellite laser ranging (SLR) data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wahr J, Molenaar M, Bryan F (1998) Time-variability of the Earth's gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103: 30,231–30,229.

    Article  Google Scholar 

  2. Jacobs SS, Giulivi CF, Mele PA (2002) Freshening of the Ross Sea during the late 20th Century. Science 297: 386–389.

    Article  Google Scholar 

  3. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine JM, Konig R, Loyer S, Neumayer H, Marty JC, Barthelmes F, Perosanz F, Zhu SY (2003) Global gravity field recovery using solely GPS tracking and accelerometer data from CHAMP. Space Sci Rev 108: 55–66.

    Article  Google Scholar 

  4. Lambeck K (1980) The Earth's Variable Rotation: Geophysical Causes and Consequences. Cambridge U. Press, Cambridge New York Sydney, pp. 449.

    Google Scholar 

  5. James TS, Ivins ER (1997) Global geodetic signatures of the Antarctic ice sheet. J Geophys Res 102: 605–633.

    Article  Google Scholar 

  6. Cox CM, SM Klosko BF Chao (2001) Changes in ice-mass balance inferred from time variations of the geopotental observed through SLR and DORIS tracking. In: Sideris M (ed) Gravity, geoid and geodynamics 2000: IAG symposium series 123, Springer, Berlin Heidelberg New York: 353–360.

    Google Scholar 

  7. Rignot E, Thomas RH (2002) Mass balance of polar ice sheets. Science 297: 1502–1506.

    Article  Google Scholar 

  8. Rignot E, Rivera A, Casassa G (2003) Contribution of the Patagonia icefields of South America to sealevel rise. Science 302: 434–437.

    Article  Google Scholar 

  9. Dyurgerov MB, Meier MF (1997) Mass balance of mountain and subpolar glaciers: a new global assessment for 1961–1990. Arctic Alp Res 29: 379–391.

    Article  Google Scholar 

  10. James TS, Ivins ER (1998) Predictions of Antarctic crustal motions driven by present-day ice sheet evolution and by isostatic memory of the Last Glacial Maximum. J Geophys Res 103: 4993–5017.

    Article  Google Scholar 

  11. Lambert A, Laird JO, Courtier N, Bower DR (1994) Absolute gravimetry applied to postglacial rebound studies: progress in Laurentia. In: Schutz BE, Anderson A, Froidevaux C, Parke M (ed) Gravimetry and Space Techniques Applied to Geodynamics and Ocean Dynamics, Geophysical Monograph 82, IUGG vol 17, AGU, Washington DC 1–7.

    Google Scholar 

  12. Amalvict M, Hinderer J, Luck B (2001) First absolute gravity measurements at the French station Dumont d'Urville (Antarctica). In: Sideras M (ed), Gravity, geoid and geodynamics 2000: IAG symposia series 123, Springer, Berlin Heidelberg New York: 373–377.

    Google Scholar 

  13. Ivins ER, Wu X, Raymond CA, Yoder CF, James TS (2001) Temporal geoid of a rebounding Antarctica and potential measurement by the GRACE and GOCE satellites. In: Sideris M (ed) Gravity, geoid and geodynamics 2000: IAG symposium series 123, Springer, Berlin Heidelberg New York: 361–366.

    Google Scholar 

  14. Visser PNAM, Rummel R, Balmino G, Sünkel H, Johanessen J, Aguirre M, Woodworth PL, Le Provost C, Tischering CC, Sabadini R (2002) The European Earth Explorer Mission: GOCE: Impact for the geosciences. In: Mitrovica JX, Vermerrsen B (ed) Ice Sheets, Sea Level and the Dynamics Earth, Geodynamics Series 29, AGU Washington DC: 95–107.

    Google Scholar 

  15. Fox AJ, Cooper APR (1998) Climate-change indicators from archival aerial photography of the Antarctic Peninsula. Ann Glaciology 27: 636–642.

    Google Scholar 

  16. Ivins ER Raymond CA, James TS (2000) The influence of 5000 year-old and younger glacial variability on present-day rebound in the Antarctic Peninsula. Earth Planets Space 52: 1023–1029.

    Google Scholar 

  17. Rau F, Braun M (2002) The regional distribution of the dry-snow zone on the Antarctic Peninsula north of 70 degrees S Ann Glaciology 34: 95–100.

    Google Scholar 

  18. Shepherd A, Wingham D, Payne T, Skvarca P (2003) Larsen Ice Shelf has progressively thinned. Science 302: 856–859.

    Article  Google Scholar 

  19. Turner J, Lachlan-Cope TA, Marshall GJ, Morris EM, Mulvaney R, Winter W (2002) Spatial variability of Antarctic Peninsula net surface mass balance. J Geophys Res 107(D13): 4173, doi:10.1029/2001JD000755.

    Article  Google Scholar 

  20. Joughin I, Rignot E, Rosanova CE, Lucchitta BK, Bohlander J (2003) Timing of recent accelerations of Pine Island Glacier. Antarctic Geophys Res Lett 30: art. no. 1706.

    Google Scholar 

  21. Rignot E, Thomas RH, Kanagaratnam P, Casassa G, Frederick E, Gogineni S, Krabill W, Rivera A, Russell R, Sonntag J, Swift R, Yungel J (2004) Improved estimation of the mass balance of glaciers draining into the Amundsen Sea sector of West Antarctica from the CECS/NASA 2002 Campaign. Ann Glaciology 39, (in press).

    Google Scholar 

  22. Wahr J, Han D, Trupin A (1995) Predictions of vertical uplift caused by changing polar ice volumes on a viscoelastic Earth. Geophys Res Lett 22: 977–901.

    Article  Google Scholar 

  23. Vitouchkine AL, Faller JE (2002) Measurement results with a small cam-driven absolute gravimeter. Metrologia 39: 465–469.

    Article  Google Scholar 

  24. Schrama EJO (2003) Error characteristics estimated from CHAMP, GRACE and GOCE derived geoids and from satellite altimetry derived mean dynamic topography. Space Sci Rev 108: 179–193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivins, E.R., Rignot, E., Wu, X., James, T.S., Casassa, G. (2005). Ice Mass Balance and Antarctic Gravity Change: Satellite and Terrestrial Perspectives. In: Reigber, C., Lühr, H., Schwintzer, P., Wickert, J. (eds) Earth Observation with CHAMP. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26800-6_1

Download citation

Publish with us

Policies and ethics