Skip to main content

VILI: Physiological Evidence

  • Conference paper
Mechanical Ventilation

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pingleton SK (1988) Complications of acute respiratory failure. Am Rev Respir Dis 137:1463–1493

    PubMed  CAS  Google Scholar 

  2. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  3. Amato MB, Barbas CS, Medeiros DM, et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–54

    Article  PubMed  CAS  Google Scholar 

  4. Brochard L, Roudot-Thoraval F, Roupie E, et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838

    PubMed  CAS  Google Scholar 

  5. Stewart TE, Meade MO, Cook DJ, et al (1998) Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure-and Volume-Limited Ventilation Strategy Group. N Engl J Med 338:355–61

    Article  PubMed  CAS  Google Scholar 

  6. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  7. Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C (2002) A metaanalysis of ALI and ARDS trials testing low tidal volumes. Am J Respir Crit Care Med 166:1510–1514

    PubMed  Google Scholar 

  8. Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittentpositive pressure ventilation with high inflation pressures. Protection by postive end-expiratory pressure. Am Rev Respir Dis 110:556–565

    PubMed  CAS  Google Scholar 

  9. Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132:880–884

    PubMed  CAS  Google Scholar 

  10. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    PubMed  CAS  Google Scholar 

  11. Slutsky AS (1994) Consensus conference on mechanical ventilation-January 28–30, 1993 at Northbrook, Illinois, USA. Intensive Care Med 20:64–79

    Article  PubMed  CAS  Google Scholar 

  12. Dreyfuss D, Saumon G (1992) Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 18:139–141

    Article  PubMed  CAS  Google Scholar 

  13. Dreyfuss D, Soler P, Saumon G (1992) Spontaneous resolution of pulmonary edema caused by short periods of cyclic overinflation. J Appl Physiol 72:2081–2089

    PubMed  CAS  Google Scholar 

  14. Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66:2364–2368

    PubMed  CAS  Google Scholar 

  15. Carlton DP, Cummings JJ, Scheerer RG, Poulain FR, Bland RD (1990) Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 69:577–583

    PubMed  CAS  Google Scholar 

  16. Peevy KJ, Hernandez LA, Moise AA, Parker JC (1990) Barotrauma and microvascular injury in lungs of nonadult rabbits: effect of ventilation pattern. Crit Care Med 18:634–637

    PubMed  CAS  Google Scholar 

  17. Taskar V, John J, Evander E, Robertson B, Jonson B (1995) Healthy lungs tolerate repetitive collapse and reopening during short periods of mechanical ventilation. Acta Anaesthesiol Scand 39:370–376

    Article  PubMed  CAS  Google Scholar 

  18. Bowton DL, Kong DL (1989) High tidal volume ventilation produces increased lung water in oleic acid-injured rabbit lungs. Crit Care Med 17:908–911

    PubMed  CAS  Google Scholar 

  19. Hernandez LA, Coker PJ, May S, Thompson AL, Parker JC (1990) Mechanical ventilation increases microvascular permeability in oleic acid-injured lungs. J Appl Physiol 69:2057–2061

    PubMed  CAS  Google Scholar 

  20. Coker PJ, Hernandez LA, Peevy KJ, Adkins K, Parker JC (1992) Increased sensitivity to mechanical ventilation after surfactant inactivation in young rabbit lungs. Crit Care Med 20:635–640

    PubMed  CAS  Google Scholar 

  21. Dreyfuss D, Soler P, Saumon G (1995) Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am J Respir Crit Care Med 151:1568–1575

    PubMed  CAS  Google Scholar 

  22. Huang YC, Weinmann GG, Mitzner W (1988) Effect of tidal volume and frequency on the temporal fall in compliance. J Appl Physiol 65:2040–2047

    PubMed  CAS  Google Scholar 

  23. Ward HE, Nicholas TE (1992) Effect of artificial ventilation and anaesthesia on surfactant turnover in rats. Respir Physiol 87:115–129

    Article  PubMed  CAS  Google Scholar 

  24. Tsang JY, Emery MJ, Hlastala MP (1997) Ventilation inhomogeneity in oleic acid-induced pulmonary edema. J Appl Physiol 82:1040–1045

    PubMed  CAS  Google Scholar 

  25. Dreyfuss D, Martin-Lefevre L, Saumon G (1999) Hyperinflation-induced lung injury during alveolar flooding in rats: effect of perfluorocarbon instillation. Am J Respir Crit Care Med 159:1752–1757

    PubMed  CAS  Google Scholar 

  26. Hughes JMB, Rosenzweig DY (1970) Factors affecting trapped gas volume in perfused dog lungs. J Appl Physiol 29:332–339

    PubMed  CAS  Google Scholar 

  27. Falke KJ, Pontoppidan H, Kumar A, Leith DE, Geffin B, Laver MB (1972) Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 51:2315–2323

    Article  PubMed  CAS  Google Scholar 

  28. Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292:284–289

    Article  PubMed  CAS  Google Scholar 

  29. Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86:58–66

    PubMed  CAS  Google Scholar 

  30. Benito S, Lemaire F (1990) Pulmonary pressure-volume relationship in acute respiratory distress syndrome in adults: role of positive end-expiratory pressure. J Crit Care 5:27–34

    Article  Google Scholar 

  31. Argiras EP, Blakeley CR, Dunnill MS, Otremski S, Sykes MK (1987) High peep decreases hyaline membrane formation in surfactant deficient lungs. Br J Anaesth 59:1278–1285

    PubMed  CAS  Google Scholar 

  32. Sandhar BK, Niblett DJ, Argiras EP, Dunnill MS, Sykes MK (1988) Effects of positive end-expiratory pressure on hyaline membrane formation in a rabbit model of the neonatal respiratory distress syndrome. Intensive Care Med 14:538–546

    Article  PubMed  CAS  Google Scholar 

  33. Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149:1327–1334

    PubMed  CAS  Google Scholar 

  34. Sohma A, Brampton WJ, Dunnill MS, Sykes MK (1992) Effect of ventilation with positive end-expiratory pressure on the development of lung damage in experimental acid aspiration pneumonia in the rabbit. Intensive Care Med 18:112–117

    Article  PubMed  CAS  Google Scholar 

  35. Martynowicz MA, Minor TA, Walters BJ, Hubmayr RD (1999) Regional expansion of oleic acid-injured lungs. Am J Respir Crit Care Med 160:250–258

    PubMed  CAS  Google Scholar 

  36. Wilson TA, Anafi RC, Hubmayr RD (2001) Mechanics of edematous lungs. J Appl Physiol 90:2088–2093

    PubMed  CAS  Google Scholar 

  37. Hubmayr RD (2002) Perspective on lung injury and recruitment: a skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165:1647–1653

    Article  PubMed  Google Scholar 

  38. Rizk NW, Murray JF (1982) PEEP and pulmonary edema. Am J Med 72:381–383

    Article  PubMed  CAS  Google Scholar 

  39. Hopewell PC, Murray JF (1976) Effects of continuous positive-pressure ventilation in experimental pulmonary edema. J Appl Physiol 40:568–574

    PubMed  CAS  Google Scholar 

  40. Luce JM, Huang TW, Robertson HT, et al (1983) The effects of prophylactic expiratory positive airway pressure on the resolution of oleic acid-induced lung injury in dogs. Ann Surg 197:327–336

    PubMed  CAS  Google Scholar 

  41. Toung T, Saharia P, Permutt S, Zuidema GD, Cameron JL (1977) Aspiration pneumonia: beneficial and harmful effects of positive end-expiratory pressure. Surgery 82:279–283

    PubMed  CAS  Google Scholar 

  42. Corbridge TC, Wood LDH, Crawford GP, Chudoba MJ, Yanos J, Sznadjer JI (1990) Adverse effects of large tidal volume and low PEEP in canine acid aspiration. Am Rev Respir Dis 142:311–315

    PubMed  CAS  Google Scholar 

  43. Colmenero Ruiz M, Fernández Mondéjar E, Fernández Sacristán MA, Rivera Fernández R, Vazquez Mata G (1997) PEEP and low tidal volume ventilation reduce lung water in porcine pulmonary edema. Am J Respir Crit Care Med 155:964–970

    PubMed  CAS  Google Scholar 

  44. Bshouty Z, Ali J, Younes M (1988) Effect of tidal volume and PEEP on rate of edema formation in in situ perfused canine lobes. J Appl Physiol 64:1900–1907

    PubMed  CAS  Google Scholar 

  45. Permutt S (1979) Mechanical influences on water accumulation in the lungs. In: Fishman AP, Renkin EM (eds) Pulmonary Edema. Am Physiol Soc, Bethesda, pp: 175–193

    Google Scholar 

  46. Luce JM (1984) The cardiovascular effects of mechanical ventilation and positive end-expiratory pressure. JAMA 252:807–811

    Article  PubMed  CAS  Google Scholar 

  47. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148:1194–1203

    PubMed  CAS  Google Scholar 

  48. Iliff LD (1971) Extra-alveolar vessels and edema development in excised dog lungs. Circ Res 28:524–532

    Google Scholar 

  49. Albert RK, Lakshminarayan S, Kirk W, Butler J (1980) Lung inflation can cause pulmonary edema in zone I of in situ dog lungs. J Appl Physiol 49:815–819

    PubMed  CAS  Google Scholar 

  50. Pattle RE (1955) Properties, function and origin of the alveolar lining layer. Nature (Lond) 175:1125–1126

    PubMed  CAS  Google Scholar 

  51. Clements JA (1961) Pulmonary edema and permeability of alveolar membranes. Arch Environ Health 2:280–283

    PubMed  CAS  Google Scholar 

  52. Albert RK, Lakshminarayan S, Hildebrandt J, Kirk W, Butler J (1979) Increased surface tension favors pulmonary edema formation in anesthetized dogs’ lungs. J Clin Invest 63:1015–1018

    PubMed  CAS  Google Scholar 

  53. Howell JBL, Permutt S, Proctor DF, Riley RL (1961) Effect of inflation of the lung on different parts of pulmonary vascular bed. J Appl Physiol 16:71–76

    PubMed  CAS  Google Scholar 

  54. Benjamin JJ, Murtagh PS, Proctor DF, Menkes HA, Permutt S (1974) Pulmonary vascular interdependence in excised dog lobes. J Appl Physiol 37:887–894

    PubMed  CAS  Google Scholar 

  55. Jefferies AL, Kawano T, Mori S, Burger R (1988) Effect of increased surface tension and assisted ventilation on 99mTc-DTPA clearance. J Appl Physiol 64:562–568

    PubMed  CAS  Google Scholar 

  56. Nieman G, Ritter-Hrncirik C, Grossman Z, Witanowski L, Clark W, Bredenberg C (1990) High alveolar surface tension increases clearance of technetium 99m diethylenetriamine-pentaacetic acid. J Thorac Cardiovasc Surg 100:129–133

    PubMed  CAS  Google Scholar 

  57. John J, Taskar V, Evander E, Wollmer P, Jonson B (1997) Additive nature of distension and surfactant perturbation on alveolocapillary permeability. Eur Respir J 10:192–199

    Article  PubMed  CAS  Google Scholar 

  58. Woo SW, Hedley-White J (1972) Macrophage accumulation and pulmonary edema due to thoracotomy and lung overinflation. J Appl Physiol 33:14–21

    PubMed  CAS  Google Scholar 

  59. Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143:1115–1120

    PubMed  CAS  Google Scholar 

  60. Markos J, Doerschuk CM, English D, Wiggs BR, Hogg JC (1993) Effect of positive end-expiratory pressure on leukocyte transit in rabbit lungs. J Appl Physiol 74:2627–2633

    PubMed  CAS  Google Scholar 

  61. Kawano T, Mori S, Cybulsky M, et al (1987) Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 62:27–33

    PubMed  CAS  Google Scholar 

  62. Ricard J-D, Dreyfuss D (2001) Cytokines during ventilator-induced lung injury: a word of caution. Anesth Analg 93:251–252

    PubMed  CAS  Google Scholar 

  63. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952

    Article  PubMed  CAS  Google Scholar 

  64. Ricard J-D, Dreyfuss D, Saumon G (2001) Production of inflammatory cytokines during ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 163:1176–1180

    PubMed  CAS  Google Scholar 

  65. Pugin J, Dunn I, Jolliet P, et al (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L1050

    PubMed  CAS  Google Scholar 

  66. Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD(1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–L173

    PubMed  CAS  Google Scholar 

  67. Verbrugge SJC, Uhlig S, Neggers SJCM, et al (1999) Different ventilation strategies affect lung function but do not increase tumor necrosis factor-α and prostacyclin production in lavaged rat lungs in vivo. Anesthesiology 91:1834–1843

    PubMed  CAS  Google Scholar 

  68. Takata M, Abe J, Tanaka H, et al (1997) Intraalveolar expression of tumor necrosis factor-alpha gene during conventional and high-frequency ventilation. Am J Respir Crit Care Med 156:272–279

    PubMed  CAS  Google Scholar 

  69. Imanaka H, Shimaoka M, Matsuura N, Nishimura M, Ohta N, Kiyono H (2001) Ventilator-induced lung injury is associated with neutrophil infiltration, macrophage activation, and TGF-ss1mRNA Upregulation in rat lungs. Anesth Analg 92:428–436

    PubMed  CAS  Google Scholar 

  70. Matsuoka T, Kawano T, Miyasaka K (1994) Role of high-frequency ventilation in surfactant-depleted lung injury as measured by granulocytes. J Appl Physiol 76:539–544

    PubMed  CAS  Google Scholar 

  71. Sugiura M, McCulloch PR, Wren S, Dawson RH, Froese AB (1994) Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol 77:1355–1365

    PubMed  CAS  Google Scholar 

  72. Imai Y, Kawano T, Miyasaka K, Takata M, Imai T, Okuyama K (1994) Inflammatory chemical mediators during conventional ventilation and during high frequency oscillatory ventilation. Am J Respir Crit Care Med 150:1550–1554

    PubMed  CAS  Google Scholar 

  73. von Bethmann AN, Brasch F, Nusing R, et al (1998) Hyperventilation induces release of cytokines from perfused mouse lung. Am J Respir Crit Care Med 157:263–272

    Google Scholar 

  74. Chiumello D, Pristine G, Slutsky AS (1999) Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory syndrome. Am J Respir Crit Care Med 160:109–116

    PubMed  CAS  Google Scholar 

  75. Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ (1997) Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med 25:1733–1743

    PubMed  CAS  Google Scholar 

  76. Verbrugge SJ, Sorm V, van ’t Veen A, Mouton JW, Gommers D, Lachmann B 1998 Lung overinflation without positive end-expiratory pressure promotes bacteremia after experimental Klebsiella pneumoniae iculation. Intensive Care Med 24172–177

    Article  PubMed  CAS  Google Scholar 

  77. Slutsky AS, Tremblay LN (1998) Multiple system organ failure. Is mechanical ventilation a contributing factor? Am J Respir Crit Care Med 157:1721–1725

    PubMed  CAS  Google Scholar 

  78. Dreyfuss D, Saumon G (1998) From ventilator-induced lung injury to multiple organ dysfunction? [editorial]. Intensive Care Med 24:102–104

    Article  PubMed  CAS  Google Scholar 

  79. Pugin J (2002) Is the ventilator responsible for lung and systemic inflammation? Intensive Care Med 28:817–819

    PubMed  Google Scholar 

  80. Dos Santos CC, Slutsky AS (2000) Mechanisms of ventilator-induced lung injury: a perspective. J Appl Physiol 89:1645–1655

    PubMed  Google Scholar 

  81. Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J (1984) Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol 57:1809–1816

    PubMed  CAS  Google Scholar 

  82. Parker JC, Ivey CL, Tucker A (1998) Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 84:1113–1118

    PubMed  CAS  Google Scholar 

  83. Parker JC (2000) Inhibitors of myosin light chain kinase and phosphodiesterase reduce ventilator-induced lung injury. J Appl Physiol 89:2241–2248

    PubMed  CAS  Google Scholar 

  84. West JB, Tsukimoto K, Mathieu Costello M, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742

    PubMed  CAS  Google Scholar 

  85. Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73:123–133

    PubMed  CAS  Google Scholar 

  86. Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD (2001) Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol 280:L938–L946

    CAS  Google Scholar 

  87. Tschumperlin DJ, Oswari J, Margulies SS (2000) Deformation-induced injury of alveolar epithelial cells: Effects of frequency, duration and amplitude. Am J Respir Crit Care Med 162:357–362

    PubMed  CAS  Google Scholar 

  88. Laffey JG, Kavanagh BP (2002) Hypocapnia. N Engl J Med 347:43–53

    Article  PubMed  CAS  Google Scholar 

  89. Laffey JG, Engelberts D, Kavanagh BP (2000) Injurious effects of hypocapnic alkalosis in the isolated lung. Am J Respir Crit Care 162:399–405

    CAS  Google Scholar 

  90. Laffey JG, Engelberts D, Kavanagh BP (2000) Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 161:141–146

    PubMed  CAS  Google Scholar 

  91. Broccard AF, Hotchkiss JR, Vannay C, et al (2001) Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am J Respir Crit Care Med 164:802–806

    PubMed  CAS  Google Scholar 

  92. Sinclair SE, Kregenow DA, Lamm WJ, Starr IR, Chi EY, Hlastala MP (2002) Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med 166:403–408

    Article  PubMed  Google Scholar 

  93. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736

    PubMed  CAS  Google Scholar 

  94. Gattinoni L, Pelosi P, Crotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151:1807–1814

    PubMed  CAS  Google Scholar 

  95. Roupie E, Dambrosio M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152:121–128

    PubMed  CAS  Google Scholar 

  96. Dambrosio M, Roupie E, Mollet JJ, et al (1997) Effects of positive end-expiratory pressure and different tidal volumes on alveolar recruitment and hyperinflation. Anesthesiology 87:495–503

    PubMed  CAS  Google Scholar 

  97. Ranieri VM, Mascia L, Fiore T, Bruno F, Brienza A, Giuliani R (1995) Cardiorespiratory effects of positive end-expiratory pressure during progressive tidal volume reduction (permissive hypercapnia) in patients with acute respiratory distress syndrome. Anesthesiology 83:710–720

    PubMed  CAS  Google Scholar 

  98. Hickling KG (1998) The pressure-volume curve is greatly modified by recruitment. A mathematical model of ards lungs. Am J Respir Crit Care Med 158:194–202

    PubMed  CAS  Google Scholar 

  99. Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159:1172–1178

    PubMed  CAS  Google Scholar 

  100. Martin-Lefèvre L, Ricard J-D, Roupie E, Dreyfuss D, Saumon G (2001) Significance of the changes in the respiratory system pressure-volume curve during acute lung injury in rats. Am J Respir Crit Care Med 164:627–632

    PubMed  Google Scholar 

  101. Gibson GJ, Pride NB (1977) Pulmonary mechanics in fibrosing alveolitis: the effects of lung shrinkage. Am Rev Respir Dis 116:637–647

    PubMed  CAS  Google Scholar 

  102. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: a model of pulmonary elasticity. J Appl Physiol 28:596–608

    PubMed  CAS  Google Scholar 

  103. Dreyfuss D, Saumon G (2002) Evidence-based medicine or fuzzy logic: what is best for ARDS management? Intensive Care Med 28:230–234

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ricard, J.D., Dreyfuss, D., Saumon, G. (2005). VILI: Physiological Evidence. In: Slutsky, A.S., Brochard, L. (eds) Mechanical Ventilation. Update in Intensive Care Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26791-3_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-26791-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20267-7

  • Online ISBN: 978-3-540-26791-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics