Skip to main content

Vascular Contribution to VILI

  • Conference paper
Mechanical Ventilation

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT))

  • 933 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hakim TS, Michel RP, Chang HK (1982) Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. J Appl Physiol 53:1110–1115

    PubMed  CAS  Google Scholar 

  2. Lai-Fook SJ (1982) Perivascular interstitial pressure measured by micro pipettes in isolated dog lung. J Appl Physiol 52:9–15

    PubMed  CAS  Google Scholar 

  3. Fishman AP (1987) Pulmonary circulation. In: Fishman AP, Fisher AB, Geiger SR (eds) Handbook of Physiology-Section 3: The Respiratory System. Am Physiol Society, Bethesda, pp:93–97

    Google Scholar 

  4. Lamm WJ, Kirk KR, Hanson WL, Wagner WW Jr, Albert RK (1991) Flow through zone 1 lungs utilizes alveolar corner vessels. J Appl Physiol 70:1518–1523

    PubMed  CAS  Google Scholar 

  5. West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724

    PubMed  CAS  Google Scholar 

  6. Brigham KL, Woolverton WC, Blake LH, Staub NC (1974) Increased sheep lung vascular permeability caused by pseudomonas bacteremia. J Clin Invest 54:792–804

    Article  PubMed  CAS  Google Scholar 

  7. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: A model of pulmonary elasticity. J Appl Physiol 28:218–233

    Google Scholar 

  8. Namba Y, Kurdak SS, Fu Z, Mathieu-Costello O, West JB (1995) Effect of reducing alveolar surface tension on stress failure in pulmonary capillaries. J Appl Physiol 79:2114–2121

    PubMed  CAS  Google Scholar 

  9. West JB, Mathieu-Costello O, Jones HJ, et al (1993) Stress failure of pulmonary capilaries in racehorses with exercise-induced pulmonary hemorrhage. J Appl Physiol 75:1097–1109

    PubMed  CAS  Google Scholar 

  10. Hopkins SR, Schoene RB, Martin TR, Henderson WR, Spragg RG, West JB (1997) Intense exercise impairs the integrity of the pulmonary blood-gas barrier in elite athletes. Am J Respir Crit Care Med 155:1090–1094

    PubMed  CAS  Google Scholar 

  11. Broccard AF, Liaudet L, Aubert JD, Schnyder P, Schaller MD (2001) Negative pressure post-tracheal extubation alveolar hemorrhage. Anesth Analg 92:273–275

    PubMed  CAS  Google Scholar 

  12. Costello ML, Mathieu-Costello OM, West JB (1992) Stress failure of alveolar epithelial cells studied by scanning electron microscopy. Am Rev Respir Dis 145:1446–1455

    PubMed  CAS  Google Scholar 

  13. West JB, Tsukimoto K, Mathieu-Costello O, Prediletto R (1991) Stress failure in pulmonary capillaries. J Appl Physiol 70:1731–1742

    PubMed  CAS  Google Scholar 

  14. Mathieu-Costello O, Willford DC, Fu Z, Garden RM, West JB (1995) Pulmonary capillaries are more resistant to stress failure in dogs than in rabbits. J Appl Physiol 79:908–917

    PubMed  CAS  Google Scholar 

  15. Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volume increases stress failure in pulmonary capillaries. J Appl Physiol 73:123–133

    PubMed  CAS  Google Scholar 

  16. Amato MB, Marini JJ (1998) Barotrauma, volutrauma, and the ventilation of acute lung injury. In: Marini JJ, Slutsky AS (eds) Physiological Basis of Ventilatory Support. Marcel Dekker, New York, pp:1187–1245

    Google Scholar 

  17. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  18. Broccard A, Shapiro R, Schmitz L, Adams AB, Nahum A, Marini JJ (2000) Prone positioning attenuates and redistributes ventilator-induced lung injury in dogs. Crit Care Med 28:295–303

    PubMed  CAS  Google Scholar 

  19. Broccard AF, Shapiro RS, Schmitz LL, Ravenscraft SA, Marini JJ (1997) Influence of prone position on the extent and distribution of lung injury in a high tidal volume oleic acid model of acute respiratory distress syndrome. Crit Care Med 25:16–27

    PubMed  CAS  Google Scholar 

  20. Hirschl RB, Tooley R, Parent A, Johnson K, Bartlett RH (1996) Evaluation of gas exchange, pulmonary compliance, and lung injury during total and partial liquid ventilation in the acute respiratory distress syndrome. Crit Care Med 24:1001–1008

    PubMed  CAS  Google Scholar 

  21. Dreyfuss D, Saumon G (1993) Role of tidal volume, FRC, and end-inspiratory volume in the development of pulmonary edema following mechanical ventilation. Am Rev Respir Dis 148:1194–1203

    PubMed  CAS  Google Scholar 

  22. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 137:1159–1164

    PubMed  CAS  Google Scholar 

  23. Broccard AF, Hothchkiss JR, Kuwayama N, et al (1998) Consequences of vascular flow on lung injury induced by mechanical ventilation. Am J Respir Crit Care Med 157:1935–1942

    PubMed  CAS  Google Scholar 

  24. Broccard AF, Hotchkiss JR, Suzuki S, Olson D, Marini JJ (1999) Effects of mean airway pressure and tidal excursion on lung injury induced by mechanical ventilation in an isolated perfused rabbit lung model. Crit Care Med 27:1533–1541

    PubMed  CAS  Google Scholar 

  25. Hotchkiss JR, Blanch LL, Murias G, et al (2000) Effects of decreased respiratory frequency on ventilator induced lung injury. Am J Respir Crit Care Med 161:463–468

    PubMed  Google Scholar 

  26. Hotchkiss JR, Blanch LL, Naviera A, Adams AB, Olson D, Marini JJ (2001) Relative roles of vascular and airspace pressures in ventilator induced lung injury. Crit Care Med 29:1593–1598

    PubMed  Google Scholar 

  27. Bshouty Z, Younes M (1992) Effect of breathing pattern and level of ventilation on pulmonary fluid filtration in dog lung. Am Rev Respir Dis 145:3672–3676

    Google Scholar 

  28. Kolobow T, Moretti MP, Fumagalli R, et al (1987) Severe impairment in lung function induced by high peak airway pressuring during mechanical ventilation. An experimental study. Am Rev Respir Dis 135:312–315

    PubMed  CAS  Google Scholar 

  29. Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143:1115–1120

    PubMed  CAS  Google Scholar 

  30. Hashin Z, Rotem A (1978) A cumulative damage theory of fatigue failure. Mater Sci Eng 34:147–160

    Google Scholar 

  31. Hotchkiss JR, Simonson DA, Marek DJ, Marini JJ, Dries DJ (2002) Pulmonary microvascular fracture in a patient with acute respiratory distress syndrome. Crit Care Med 30:2368–2370

    PubMed  Google Scholar 

  32. Dreyfuss D, Soler P, Saumon G (1992) Spontaneous resolution of pulmonary edema caused by short periods of cyclic overinflation. J Appl Physiol 72:2081–2089

    PubMed  CAS  Google Scholar 

  33. Vlahakis NE, Hubmayr RD (2000) Invited review: Plasma membrane stress failure in alveolar epithelial cells. J Appl Physiol 89:2490–2496

    PubMed  CAS  Google Scholar 

  34. Broccard A, Vannay C, Feihl F, Schaller MD (2002) Impact of low pulmonary vascular pressure on ventilator-induced lung injury. Crit Care Med 30:2183–2190

    PubMed  Google Scholar 

  35. Sinclair SE, Kregenow DA, Lamm WJ, Starr IR, Chi EY, Hlastala MP (2002) Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med 166:403–408

    Article  PubMed  Google Scholar 

  36. Broccard AF, Hotchkiss JR, Vannay C, et al (2001) Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am J Respir Crit Care Med 164:802–806

    PubMed  CAS  Google Scholar 

  37. Laffey JG, Tanaka M, Engelberts D, et al (2000) Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. Am J Respir Crit Care Med 162:2021–2022

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marini, J.J., Hotchkiss, J.R., Broccard, A.F. (2005). Vascular Contribution to VILI. In: Slutsky, A.S., Brochard, L. (eds) Mechanical Ventilation. Update in Intensive Care Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26791-3_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-26791-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20267-7

  • Online ISBN: 978-3-540-26791-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics