Skip to main content

Biophysical Factors Leading to VILI

  • Conference paper
Mechanical Ventilation

Part of the book series: Update in Intensive Care Medicine ((UICMSOFT))

  • 943 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  2. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157:294–323

    PubMed  CAS  Google Scholar 

  3. Uhlig S (2002) Mechanotransduction in the lung: Ventilation-induced lung injury and mechanotransduction: stretchingit too far? Am J Physiol 282:L892–L896

    CAS  Google Scholar 

  4. Hubmayr RD (2002) Perspective on lung injury and recruitment: A skeptical look at the opening and collapse story. Am J Respir Crit Care Med 165:1647–1653

    Article  PubMed  Google Scholar 

  5. Chang H, Lai-Fook SJ, Domino KB, et al (2002) Spatial distribution of ventilation and perfusion in anesthetized dogs in lateral postures. J of Appl Physiol 92:745–762

    Google Scholar 

  6. Rodarte JF, Hubmayr RD, Stamenovic D, Walters BJ (1985) Regional lung strain in dogs during deflation from total lung capacity. J Appl Physiol 58:164–172

    PubMed  CAS  Google Scholar 

  7. Lai-Fook SJ, Kallok MJ (1982) Bronchial-arterial interdependence in isolated dog lung. J Appl Physiol 52:1000–1007

    PubMed  CAS  Google Scholar 

  8. Bachofen H, Schurch S, Urbinelli M, Weibel ER (1987) Relations among alveolar surface tension, surface area, volume, and recoil pressure. J Appl Physiol 62:1878–1887

    PubMed  CAS  Google Scholar 

  9. Wilson TA, Bachofen H (1982) A model for mechanical structure of the alveolar duct. J Appl Physiol 52:1064–1070

    PubMed  CAS  Google Scholar 

  10. Oldmixon EH, Hoppin FG Jr (1991) Alveolar septal folding and lung inflation history. J Appl Phys 71:2369–2379

    CAS  Google Scholar 

  11. Tschumperlin DJ, Margulies SS (1999) Alveolar epithelial surface area-volume relationship in isolated rat lungs. J Appl Physiol 86:2026–2033

    PubMed  CAS  Google Scholar 

  12. McCann UG 2nd, Schiller HJ, Carney DE, Gatto LA, Steinberg JM, Nieman GF (2001) Visual validation of the mechanical stabilizing effects of positive end-expiratory pressure at the alveolar level. J Surg Res 99:335–442

    Article  PubMed  Google Scholar 

  13. Schiller HJ, McCann UG 2nd, Carney DE, Gatto LA, Steinberg JM, Nieman GF (2001) Altered alveolar mechanics in the acutely injured lung. Crit Care Med 29:1049–1055

    PubMed  CAS  Google Scholar 

  14. Martynowicz MA, Minor TA, Walters BJ, Hubmayr RD (1999) Regional expansion of oleic acid-injured lungs. Am J Respir Crit Care Med 160:250–258

    PubMed  CAS  Google Scholar 

  15. Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure: Computed tomographic scan study. Am Rev Respir Dis 136:730–736

    PubMed  CAS  Google Scholar 

  16. Marini JJ (2001) Ventilator-induced airway dysfunction? Am J Respir Crit Care Med 163:806–807

    PubMed  CAS  Google Scholar 

  17. Matthay MA, Bhattacharya S, Gaver D, et al (2002) Ventilator-induced lung injury: In vivo and in vitro mechanisms. Am J Physiol 283:L678–L682

    CAS  Google Scholar 

  18. Gaver DP III, Kute SM (1998) A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophys J 75:721–733

    PubMed  CAS  Google Scholar 

  19. Costello ML, Mathieu-Costello O, West JB (1992) Stress failure of alveolar epithelial cells studied by scanning electron microscopy. Am Rev Respir Dis 145:1446–1455

    PubMed  CAS  Google Scholar 

  20. Fu Z, Costello ML, Tsukimoto K, et al (1992) High lung volumes increases stress failure in pulmonary capillaries. J Appl Physiol 73:123–133

    PubMed  CAS  Google Scholar 

  21. John E, McDevitt M, Wilborn W, Cassady G (1982) Ultrastructure of the lung after ventilation. Br J Exp Pathol 63:401–407

    PubMed  CAS  Google Scholar 

  22. Savla U, Neal CR, Michel CC (2002) Openings in frog microvascular endothelium at different rates of increase in pressure and at different temperatures. J Physiol (Lond) 539:285–293

    Article  PubMed  CAS  Google Scholar 

  23. Gajic O, Lee J, Doerr CH, Berrios JC, Myers JL, Hubmayr RD (2003) Ventilator-induced cell wounding and repair in the intact lung. Am J Respir Crit Care Med 167:1057–1063

    Article  PubMed  Google Scholar 

  24. Neal CR, Michel CC (1996) Openings in frog microvascular endothelium induced by high intravascular pressures. J Appl Physiol 492:39–52

    CAS  Google Scholar 

  25. Dreyfuss D, Soler P, Saumon G (1992) Spontaneous resolution of pulmonary edema caused by short periods of cyclic overinflation J Appl Physiol 72:2081–2089

    PubMed  CAS  Google Scholar 

  26. Elliott AR, Fu Z, Tsukimoto K, Prediletoo R, Mathieu-Costello O, West JB (1992) Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure. J Appl Physiol 73:1150–1158

    PubMed  CAS  Google Scholar 

  27. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  PubMed  CAS  Google Scholar 

  28. Ingber DE (2000) Opposing views on tensegrity as a structural framework for understanding cell mechanics. J Appl Physiol 89:1663–1670

    PubMed  CAS  Google Scholar 

  29. Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD (2002) Role of deformation-induced lipid traffickingin the prevention of plasma membrane stress failure. Am J Respir Crit Care Med 166:1282–1289

    Article  PubMed  Google Scholar 

  30. Berrios JC, Schroeder MA, Hubmayr RD (2001) Mechanical properties of alveolar epithelial cells in culture. J Appl Physiol 91:65–73

    PubMed  CAS  Google Scholar 

  31. Vlahakis NE, Schroeder MA, Pagano RE, Hubmayr RD (2001) Deformation-induced lipid trafficking in alveolar epithelial cells. Am J Physiol 280:L938–L946

    CAS  Google Scholar 

  32. Olbrich K, Rawicz W, Needham D, Evans E (2000) Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys J 79:321–327

    PubMed  CAS  Google Scholar 

  33. Sheetz MP (2001) Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2:392–396

    Article  PubMed  CAS  Google Scholar 

  34. Wang N, Naruse K, Stamenovic D, et al (2001) Mechanical behavior in living cells consistent with the tensegrity model. Proc Natl Acad Sci USA 98:7765–7770

    PubMed  CAS  Google Scholar 

  35. Waugh RE (1983) Effects of abnormal cytoskeletal structure on erythrocyte membrane mechanical properties. Cell Motil 3:609–622

    Article  PubMed  CAS  Google Scholar 

  36. Janmey PA (1995) Protein regulation by phosphatidylinositol lipids. Chem Biol 2:61–65

    Article  PubMed  CAS  Google Scholar 

  37. Raucher D, Stauffer T, Chen W et al (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228

    Article  PubMed  CAS  Google Scholar 

  38. Solsona C, Innocenti B, Fernandez JM (1998) Regulation of exocytotic fusion by cell inflation. Biophys J 74:1061–1073

    Article  PubMed  CAS  Google Scholar 

  39. Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77:3363–3370

    PubMed  CAS  Google Scholar 

  40. Ruwhof C, van Wamel JET, Noordzij LAW, Aydin S. Harper JCR, van der Laarse A (2001) Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. Cell Calcium 29:73–83

    Article  PubMed  CAS  Google Scholar 

  41. Stroetz RW, Vlahakis NE, Walters BJ, et al (2001) Validation of a new live cell strain system: characterization of plasma membrane stress failure. J Appl Physiol 90:2361–2370

    PubMed  CAS  Google Scholar 

  42. Park H, Go YM, Darji R, et al (2000) Caveolin-1 regulates sheer stress-dependent activation of extracellular signal-regulated kinase. Am J Physiol 278:H1285–H1293

    CAS  Google Scholar 

  43. Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  PubMed  CAS  Google Scholar 

  44. Razani B, Woodman SE, Lisanti MP (2002) Caveolae: From cell biology to animal physiology. Pharmacol Rev 54:431–467

    Article  PubMed  CAS  Google Scholar 

  45. Puri V, Watanabe R, Singh RD, et al (2001) Clathrin-dependent and-independent internalization of plasma membrane sphingolipids initiates two Golgi targeting pathways. J Cell Biol 154:535–547

    Article  PubMed  CAS  Google Scholar 

  46. Devaux PF (1991) Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30:1163–1173

    Article  PubMed  CAS  Google Scholar 

  47. Tschumperlin DJ, Margulies SS (1998) Equibiaxial deformation-induced injury of alveolar epithelial cells in vitro. Am J Physiol 275:L1173–1183

    PubMed  CAS  Google Scholar 

  48. Hubmayr RD (2000) Biology lessons from oscillatory cell mechanics. J Appl Physiol 89:1617–1618

    PubMed  CAS  Google Scholar 

  49. McNeil PL, Terasaki M (2001) Coping with the inevitable: how cells repair a torn surface membrane. Nat Cell Biol 3:E124–129

    Article  PubMed  CAS  Google Scholar 

  50. Fischer TA, McNeil PL, Khakee R, et al (1997) Cardiac myocyte membrant wounding in the abruptly pressure-overloaded rat heart under high wall stress. Hypertension 30:1041–1046

    PubMed  CAS  Google Scholar 

  51. Benz R, Zimmermann U (1981) The resealing process of lipid bilayers after reversible electrical breakdown. Biochim Biophys Acta 640:169–178

    PubMed  CAS  Google Scholar 

  52. Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–393

    PubMed  CAS  Google Scholar 

  53. Togo T, Krasieva TB, Steinhardt RA (2000) A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 11:4339–4346

    PubMed  CAS  Google Scholar 

  54. McNeil PL, Vogel SS, Miyake K, Terasaki M (2000) Patching plasma membrane disruptions with cytoplasmic membrane. J Cell Sci 113:1891–1902

    PubMed  CAS  Google Scholar 

  55. Reddy A, Caler EV, Andrews NW (2001) Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes. Cell 106:157–169

    Article  PubMed  CAS  Google Scholar 

  56. Liu, M., Tanswell AK, Post M (1999) Mechanical force-induced signal transduction in lung cells. Am J Physiol 277:L667–L683

    PubMed  CAS  Google Scholar 

  57. Pugin J, Dunn I, Jolliet P, et al (1998) Activation of human macrophages by mechanical ventilation in vitro. Am J Physiol 275:L1040–L1050

    PubMed  CAS  Google Scholar 

  58. Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD(1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277:L167–L173

    PubMed  CAS  Google Scholar 

  59. Grembowicz KP, Sprague D, McNeil PL (1999) Temporary disruption of the plasma membrane is required for c-fos expression in response to mechanical stress. Mol Biol Cell 10:1247–1257

    PubMed  CAS  Google Scholar 

  60. Tremblay L, Valenza F, Ribeiro SP, et al (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99:944–952

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vlahakis, N., Berrios, J.C., Hubmayr, R.D. (2005). Biophysical Factors Leading to VILI. In: Slutsky, A.S., Brochard, L. (eds) Mechanical Ventilation. Update in Intensive Care Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26791-3_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-26791-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20267-7

  • Online ISBN: 978-3-540-26791-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics