Skip to main content

Street Centreline Generation with an Approximated Area Voronoi Diagram

  • Conference paper
Developments in Spatial Data Handling

Abstract

This paper presents a methodology to generate a topologically correct street centreline from city block boundaries using ArcGIS software. The approach utilises Sugihara’s (1992) point approximation algorithm as a starting point to create an area Voronoi diagram which forms the basis of the centreline. A recursive method is introduced to schematize the geometry of the Voronoi medial axis. The approach is applied to data from the City of Rosario, Argentina. The paper concludes with suggestions for further enhancements to the approach that have, among other things, the potential to automate attribution to network segments using adjacent polygon attributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alnoor, L. and Martinez, R. (1996). Automated derivation of high accuracy road centerlines using Thiessen polygons technique. In ESRI User Conference Proceedings.

    Google Scholar 

  • Amenta, N., Bern, M., and Eppstein, D. (1998). The crust and the β-skeleton: Combinatorial curve reconstruction. Graphical Models and Image Processing, 60/2 (2):125–135.

    Article  Google Scholar 

  • Burge, M. and Monagan, G. (1995a). Extracting words and multi-part symbols in graphics rich documents, volume 97 of Lecture Notes in Computer Science, pages 533–538. Springer-Verlag.

    Google Scholar 

  • Burge, M. and Monagan, G. (1995b). Using the voronoi tessellation for grouping words and multi-part symbols in documents. In Proceedings, Vision Geometry IV, SPIE International Symposium on Optics, Imaging and Instrumentation, pages 116–124.

    Google Scholar 

  • Burge, M. and Monagan, G. (1995c). Using the voronoi tessellation for grouping words and multi-part symbols in documents. Technical report, Institute of Systems Science, Johannes Kepler University.

    Google Scholar 

  • Cao, W. and Qin, Q. (1998). A knowledge-based research for road extraction from digital satellite images. Acta Scientiarium Naturalium Universitatis Pekinensis, 34(2–3):254–263.

    Google Scholar 

  • Couloiger, I. and Ranchin, T. (2000). Mapping of urban areas: a multi-resolution modeling approach for semiautomatic extraction of streets. Photogrammetric Engineering and Remote Sensing, 66(7):867–874.

    Google Scholar 

  • ESRI (2000). White paper on CENTERLINE command.

    Google Scholar 

  • Eykamp, C. (1999). Supercharge AMLs with embedded Perl. ArcUser, pages 44–46.

    Google Scholar 

  • Fiset, R. and Cavayas, F. (1997). Automatic comparison of a topographic map with remotely sensed images in a map updating perspective: the road network case. International Journal of Remote Sensing, 18(4):991–1006.

    Google Scholar 

  • Flanagan, N., Jennings, C, and Flanagan, C. (1994). Automatic GIS data capture and conversion. In Worboys, M. F., editor, Innovations in GIS I, pages 25–38. Taylor & Francis.

    Google Scholar 

  • Gold, C. (2000). Primal/dual relationships and applications. In Proceedings of the 9th International Symposium on Spatial Data Handling, pages 4a.l5–4a.27.

    Google Scholar 

  • Gold, C, Nantel, J., and Yang, W. (1996). Outside-in: an alternative approach to forest map digitizing. International Journal of Geographical Information Systems, 10(3):291–310.

    Google Scholar 

  • Gold, C. and Snoeyink, J. (2001). A one-step crust and skeleton extraction algorithm. Algorithmica, 30:144–163.

    Article  Google Scholar 

  • Ilg, M. (1990a). Knowledge-based interpretation of road maps. In Proceedings of the 4th International Symposium on Spatial Data Handling, volume 1, pages 25–34.

    Google Scholar 

  • Ilg, M. (1990b). Knowledge-based understanding of road maps and other line images. In Proceedings, 10th International Conference on Pattern Recognition, volume 1, pages 282–284. IEEE Computer Society Press.

    Google Scholar 

  • K. Kise, A. S. and Iwata, M. (1998). Segmentation of page images using the area voronoi diagram. Computer Vision and Image Understanding, 70(3):370–382.

    Article  Google Scholar 

  • Krozel, J. and II, D. A. (1990). Navigation path planning for autonomous aircraft: Voronoi diagram approach. Journal of Guidance, Control, and Dynamics, 13(6):1152–1154.

    Google Scholar 

  • Meng, A. C.-C. (1987). Flight path planning under uncertainty for robotic air vehicles. In IEEE National Aerospace and Electronics Conference, Institute of Electrical and Electronics Engineers, pages 359–366.

    Google Scholar 

  • N. S. V. Rao, N. S. and Iyengar, S. (1991). A ‘reaction’ method for learned navigation in unknown terrains for a circular robot. IEEE Transactions on Robotics and Automation, 7(5):699–707.

    Article  Google Scholar 

  • Ó’Dúnlaing, C. and Yap, C. (1985). A ‘reaction’ method for planning the motion of a disk. Journal of Algorithms, 6:104–111.

    Google Scholar 

  • Ogniewicz, R. (1993). Discrete Voronoi Skeletons. Konstanz: Hartung-Gorre Verlag.

    Google Scholar 

  • Ogniewicz, R. and Ilg, M. (1992). Voronoi skeletons: theory and applications.

    Google Scholar 

  • Ogniewicz, R. and Kübler, O. (1995). Hierarchic Voronoi skeletons. Pattern Recognition, 28(3):343–359.

    Article  Google Scholar 

  • Okabe, A., Boots, B., Sugihara, K., and Chiu, S. (2000). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, second edition.

    Google Scholar 

  • O’Rourke, J. (1998). Computational Geometry in C Cambridge University Press, second edition.

    Google Scholar 

  • Radke, J. and Flodmark, A. (1999). The use of spatial decompositions for constructing street centerlines. Geographical Information Sciences, 5(1):15–23.

    Google Scholar 

  • Schwartz, J. and Yap, C. (1986). Advances in Robotics. Lawrence Erlbaum Associates.

    Google Scholar 

  • Serra, J. (1982). Image Analysis and Mathematical Morphology. Academic Press Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roberts, S.A., Hall, G.B., Boots, B. (2005). Street Centreline Generation with an Approximated Area Voronoi Diagram. In: Developments in Spatial Data Handling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26772-7_33

Download citation

Publish with us

Policies and ethics