Skip to main content

Synthesis and Quality Control of Viral Membrane Proteins

  • Chapter
Membrane Trafficking in Viral Replication

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 285))

Abstract

Viruses use the host cellular machinery to translate viral proteins. Similar to cellular proteins directed to the secretory pathway, viral (glyco)proteins are synthesized on polyribosomes and targeted to the endoplasmic reticulum (ER). For viruses that encode polyproteins, folding of the individual proteins of the precursor often is coordinated. Translocation and the start of folding coincide and are assisted by cellular folding factors present in the lumen of the ER. The protein concentration a newborn protein finds in this compartment is enormous (hundreds of mg/ml) and the action of molecular chaperones is essential to prevent aggregation. Viral envelope proteins also undergo the cellular quality control mechanisms, which ensure, with variable stringency, that only proteins with the correct structure will proceed through the secretory pathway. Proteins that are misfolded, or not yet folded, are retained in the ER until they reach the native conformation or until their retrotranslocation into the cytosol for degradation. Peculiar characteristic of viruses is their ability to interfere with the cellular machinery to ensure virus production and, moreover, to pass through the body unobserved by the host immune system. This section describes some mechanisms of genetic variation and viral immune evasion that involve the secretory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberini CM, P Bet, C Milstein and R Sitia (1990) Secretion of immunoglobulin M assembly intermediates in the presence of reducing agents. Nature 347(6292):485–7

    Article  PubMed  Google Scholar 

  • Andersson H, BU Barth, M Ekstrom and H Garoff (1997) Oligomerization-dependent folding of the membrane fusion protein of Semliki Forest virus. J Virol 71(12):9654–63

    PubMed  Google Scholar 

  • Anelli T, M Alessio, A Mezghrani, T Simmen, F Talamo, A Bachi and R Sitia (2002) ERp44, a novel endoplasmic reticulum folding assistant of the thioredoxin family. EMBO J 21(4): 835–44

    Article  PubMed  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(96): 223–30

    PubMed  Google Scholar 

  • Benham AM, A Cabibbo, A Fassio, N Bulleid, R Sitia and I Braakman (2000) The CXXCXXC motif determines the folding, structure and stability of human Ero1-Lα. EMBO J 19(17): 4493–502

    Article  PubMed  Google Scholar 

  • Bennett EM, JR Bennink, JW Yewdell and FM Brodsky (1999) Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression. J Immunol 162(9): 5049–52

    PubMed  Google Scholar 

  • Berman PW, WM Nunes and OK Haffar (1988) Expression of membrane-associated and secreted variants of gp160 of human immunodeficiency virus type 1 in vitro and in continuous cell lines. J Virol 62(9): 3135–42

    PubMed  Google Scholar 

  • Blagoveshchenskaya AD, L Thomas, SF Feliciangeli, CH Hung and G Thomas (2002) HIV-1 Nef downregulates MHC-I by a PACS-1-and PI3K-regulated ARF6 endocytic pathway. Cell 111(6): 853–66

    Google Scholar 

  • Braakman I, J Helenius and A Helenius (1992) Manipulating disulfide bond formation and protein folding in the endoplasmic reticulum. EMBO J 11(5): 1717–22

    PubMed  Google Scholar 

  • Braakman, I., D. Hebert. Disulfide (-SS-) bond formation overview. In: Current Protocols in Protein Science, Chapter 14.1 (eds. J. Coligan, B. Dunn, H. Ploegh, D. Speicher, P. Wingfield; John Wiley and Sons, Inc, New York, 1996): 14.1.1–14.1.15

    Google Scholar 

  • Braakman I and E van Anken (2000) Folding of viral envelope glycoproteins in the endoplasmic reticulum. Traffic 1(7): 533–9

    Article  PubMed  Google Scholar 

  • Brodsky JL and AA McCracken (1999) ER protein quality control and proteasome-mediated protein degradation. Semin Cell Dev Biol 10(5): 507–13

    Article  PubMed  Google Scholar 

  • Bu G, HJ Geuze, GJ Strous and AL Schwartz (1995) 39 kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J 14(10): 2269–80

    PubMed  Google Scholar 

  • Cabibbo A, M Pagani, M Fabbri, M Rocchi, MR Farmery, NJ Bulleid and R Sitia (2000) ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J Biol Chem 275(7): 4827–33

    Article  PubMed  Google Scholar 

  • Carleton M, H Lee, M Mulvey and DT Brown (1997) Role of glycoprotein PE2 in formation and maturation of the Sindbis virus spike. J Virol 71(2): 1558–66

    PubMed  Google Scholar 

  • Cocquerel L, JC Meunier, A Op de Beeck, D Bonte, C Wychowski and J Dubuisson (2001) Coexpression of hepatitis C virus envelope proteins E1 and E2 in cis improves the stability of membrane insertion of E2. J Gen Virol 82(7): 1629–35

    PubMed  Google Scholar 

  • Cox JH, JR Bennink and JW Yewdell (1991) Retention of adenovirus E19 glycoprotein in the endoplasmic reticulum is essential to its ability to block antigen presentation. J Exp Med 174(6): 1629–37

    Article  PubMed  Google Scholar 

  • Danilczyk UG, MF Cohen-Doyle and DB Williams (2000) Functional relationship between calreticulin, calnexin, and the endoplasmic reticulum luminal domain of calnexin. J Biol Chem 275(17): 13089–97

    Article  PubMed  Google Scholar 

  • Doms RW, RA Lamb, JK Rose and A Helenius (1993) Folding and assembly of viral membrane proteins. Virology 193(2): 545–62

    Article  PubMed  Google Scholar 

  • Duvet S, A Op De Beeck, L Cocquerel, C Wychowski, R Cacan and J Dubuisson (2002) Glycosylation of the hepatitis C virus envelope protein E1 occurs post-translationally in a mannosylphosphoryldolichol-deficient CHO mutant cell line. Glycobiology 12(2): 95–101

    Article  PubMed  Google Scholar 

  • Ellgaard L, P Bettendorff, D Braun, T Herrmann, F Fiorito, I Jelesarov, P Guntert, A Helenius and K Wuthrich (2002) NMR structures of 36 and 73-residue fragments of the calreticulin P-domain. J Mol Biol 322(4): 773–84

    Article  PubMed  Google Scholar 

  • Ellgaard L and A Helenius (2001) ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 13(4): 431–7

    Article  PubMed  Google Scholar 

  • Ellgaard L, M Molinari and A Helenius (1999) Setting the standards: quality control in the secretory pathway. Science 286(5446): 1882–8

    Article  PubMed  Google Scholar 

  • Ellgaard L, R Riek, D Braun, T Herrmann, A Helenius and K Wuthrich (2001) Three-dimensional structure topology of the calreticulin P-domain based on NMR assignment. FEBS Lett 488(1–2): 69–73

    Article  PubMed  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11(1): 114–9

    Article  PubMed  Google Scholar 

  • Fischer PB, GB Karlsson, TD Butters, RA Dwek and FM Platt (1996) n-Butyldeoxyno-jirimycin-mediated inhibition of human immunodeficiency virus entry correlates with changes in antibody recognition of the V1/V2 region of gp120. J Virol 70(10): 7143–52

    PubMed  Google Scholar 

  • Fischer WB and MS Sansom (2002) Viral ion channels: structure and function. Biochim Biophys Acta 1561(1): 27–45

    PubMed  Google Scholar 

  • Fra AM, C Fagioli, D Finazzi, R Sitia and CM Alberini (1993) Quality control of ER synthesized proteins: an exposed thiol group as a three-way switch mediating assembly, retention and degradation. EMBO J 12(12): 4755–61

    PubMed  Google Scholar 

  • Frand AR and CA Kaiser (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1(2): 161–70

    Article  PubMed  Google Scholar 

  • Frand AR and CA Kaiser (1999) Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell 4(4): 469–77

    Article  PubMed  Google Scholar 

  • Freedman RB, P Klappa and LW Ruddock (2002) Protein disulfide isomerases exploit synergy between catalytic and specific binding domains. EMBO Rep 3(2):136–40

    Article  PubMed  Google Scholar 

  • Frickel EM, R Riek, I Jelesarov, A Helenius, K Wuthrich and L Ellgaard (2002) TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc Natl Acad Sci U S A 99(4): 1954–9

    Article  PubMed  Google Scholar 

  • Friedlander R, E Jarosch, J Urban, C Volkwein and T Sommer (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2(7): 379–84

    Article  PubMed  Google Scholar 

  • Fujita K, S Omura and J Silver (1997) Rapid degradation of CD4 in cells expressing human immunodeficiency virus type 1 Env and Vpu is blocked by proteasome inhibitors. J Gen Virol 78(3): 619–25

    PubMed  Google Scholar 

  • Gerber J, U Muhlenhoff, G Hofhaus, R Lill and T Lisowsky (2001) Yeast ERV2p is the first microsomal FAD-linked sulfhydryl oxidase of the Erv1p/Alrp protein family. J Biol Chem 276(26): 23486–91

    Article  PubMed  Google Scholar 

  • Gorlich D and TA Rapoport (1993) Protein translocation into proteoliposomes reconstituted from purified components of the endoplasmic reticulum membrane. Cell 75(4): 615–30

    Article  PubMed  Google Scholar 

  • Gothel SF and MA Marahiel (1999) Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55(3): 423–36

    Article  PubMed  Google Scholar 

  • Haigh NG and AE Johnson (2002) A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. J Cell Biol 156(2): 261–70

    Article  PubMed  Google Scholar 

  • Hammond C, I Braakman and A Helenius (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A 91(3): 913–7

    PubMed  Google Scholar 

  • Harding HP, M Calfon, F Urano, I Novoa and D Ron (2002) Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–99

    Article  PubMed  Google Scholar 

  • Hartmann E, D Gorlich, S Kostka, A Otto, R Kraft, S Knespel, E Burger, TA Rapoport and S Prehn (1993) A tetrameric complex of membrane proteins in the endoplasmic reticulum. Eur J Biochem 214(2): 375–81

    Article  PubMed  Google Scholar 

  • Hauri H, C Appenzeller, F Kuhn and O Nufer (2000) Lectins and traffic in the secretory pathway. FEBS Lett 476(1–2): 32–7

    Article  PubMed  Google Scholar 

  • Hebert DN, JX Zhang, W Chen, B Foellmer and A Helenius (1997) The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol 139(3): 613–23

    Article  PubMed  Google Scholar 

  • Hegde NR, RA Tomazin, TW Wisner, C Dunn, JM Boname, DM Lewinsohn and DC Johnson (2002) Inhibition of HLA-DR assembly, transport, and loading by human cytomegalovirus glycoprotein US3: a novel mechanism for evading major histocompatibility complex class II antigen presentation. J Virol 76(21): 10929–41

    Article  PubMed  Google Scholar 

  • Hegde RS, S Voigt, TA Rapoport and VR Lingappa (1998) TRAM regulates the exposure of nascent secretory proteins to the cytosol during translocation into the endoplasmic reticulum. Cell 92(5): 621–31

    Article  PubMed  Google Scholar 

  • Helenius J, DT Ng, CL Marolda, P Walter, MA Valvano and M Aebi (2002) Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature 415(6870): 447–50

    Article  PubMed  Google Scholar 

  • Hengel H, JO Koopmann, T Flohr, W Muranyi, E Goulmy, GJ Hammerling, UH Koszinowski and F Momburg (1997) A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6(5): 623–32

    Article  PubMed  Google Scholar 

  • Hesketh JE and IF Pryme (1991) Interaction between mRNA, ribosomes and the cytoskeleton. Biochem J 277(1): 1–10

    PubMed  Google Scholar 

  • Hewitt EW, SS Gupta and PJ Lehner (2001) The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J 20(3): 387–96

    Article  PubMed  Google Scholar 

  • Hobbs HH, MS Brown and JL Goldstein (1992) Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1(6): 445–66

    Article  PubMed  Google Scholar 

  • Holtappels R, D Thomas, J Podlech, G Geginat, HP Steffens and MJ Reddehase (2000) The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 74(4): 1871–84

    Article  PubMed  Google Scholar 

  • Hwang C, AJ Sinskey and HF Lodish (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257(5076): 1496–502

    PubMed  Google Scholar 

  • Imperiali B and KW Rickert (1995) Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci U S A 92(1): 97–101

    PubMed  Google Scholar 

  • Jakob CA, D Bodmer, U Spirig, P Battig, A Marcil, D Dignard, JJ Bergeron, DY Thomas and M Aebi (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2(5): 423–30

    PubMed  Google Scholar 

  • Johnson AE and MA van Waes (1999) The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol 15:799–842

    Article  PubMed  Google Scholar 

  • Kerkau T, I Bacik, JR Bennink, JW Yewdell, T Hunig, A Schimpl and U Schubert (1997) The human immunodeficiency virus type 1 (HIV-1) Vpu protein interferes with an early step in the biosynthesis of major histocompatibility complex (MHC) class I molecules. J Exp Med 185(7): 1295–305

    Article  PubMed  Google Scholar 

  • Land A, D Zonneveld and I Braakman (2003) Folding of HIV-1 envelope glycoprotein involves extensive isomerization of disulfide bonds and conformation-dependent signal peptide cleavage. FASEB J in press

    Google Scholar 

  • Leonchiks A, V Stavropoulou, A Sharipo and MG Masucci (2002) Inhibition of ubiquitin-dependent proteolysis by a synthetic glycine-alanine repeat peptide that mimics an inhibitory viral sequence. FEBS Lett 522(1–3): 93–8

    Article  PubMed  Google Scholar 

  • Levitskaya J, A Sharipo, A Leonchiks, A Ciechanover and MG Masucci (1997) Inhibition of ubiquitin/proteasome-dependent protein degradation by the Gly-Ala repeat domain of the Epstein-Barr virus nuclear antigen 1. Proc Natl Acad Sci USA 94(23): 12616–21

    Article  PubMed  Google Scholar 

  • Li Y, L Luo, DY Thomas and CY Kang (1994) Control of expression, glycosylation, and secretion of HIV-1 gp120 by homologous and heterologous signal sequences. Virology 204(1): 266–78

    Article  PubMed  Google Scholar 

  • Lorenz IC, SL Allison, FX Heinz and A Helenius (2002) Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J Virol 76(11): 5480–91

    Article  PubMed  Google Scholar 

  • Ma Y and LM Hendershot (2001) The unfolding tale of the unfolded protein response. Cell 107(7): 827–30

    Article  PubMed  Google Scholar 

  • Matlack KE, W Mothes and TA Rapoport (1998) Protein translocation: tunnel vision. Cell 92(3): 381–90

    Article  PubMed  Google Scholar 

  • Merola M, M Brazzoli, F Cocchiarella, JM Heile, A Helenius, AJ Weiner, M Houghton and S Abrignani (2001) Folding of hepatitis C virus E1 glycoprotein in a cell-free system. J Virol 75(22): 11205–17

    Article  PubMed  Google Scholar 

  • Mezghrani A, A Fassio, A Benham, T Simmen, I Braakman and R Sitia (2001) Manipulation of oxidative protein folding and PDI redox state in mammalian cells. EMBO J 20(22): 6288–96

    Article  PubMed  Google Scholar 

  • Michalak JP, C Wychowski, A Choukhi, JC Meunier, S Ung, CM Rice and J Dubuisson (1997) Characterization of truncated forms of hepatitis C virus glycoproteins. J Gen Virol 78(9): 2299–306

    PubMed  Google Scholar 

  • Molinari M, C Galli, V Piccaluga, M Pieren and P Paganetti (2002) Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 158(2): 247–57

    Article  PubMed  Google Scholar 

  • Molinari M and A Helenius (1999) Glycoproteins form mixed disulphides with oxidoreductases during folding in living cells. Nature 402(6757): 90–3

    Article  PubMed  Google Scholar 

  • Molinari M and A Helenius (2000) Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288(5464): 331–3

    Article  PubMed  Google Scholar 

  • Momburg F and P Tan (2002) Tapasin-the keystone of the loading complex optimizing peptide binding by MHC class I molecules in the endoplasmic reticulum. Mol Immunol 39(3–4): 217–33

    Article  PubMed  Google Scholar 

  • Nagata K (1996) Hsp47: a collagen-specific molecular chaperone. Trends Biochem Sci 21(1): 22–6

    Article  PubMed  Google Scholar 

  • Nakatsukasa K, S Nishikawa, N Hosokawa, K Nagata and T Endo (2001) Mnl1p, an alpha-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem 276(12): 8635–8

    Article  PubMed  Google Scholar 

  • Noiva R (1999) Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol 10(5): 481–93

    Article  PubMed  Google Scholar 

  • Norgaard P, V Westphal, C Tachibana, L Alsoe, B Holst and JR Winther (2001) Functional differences in yeast protein disulfide isomerases. J Cell Biol 152(3): 553–62

    Article  PubMed  Google Scholar 

  • Pagani M, M Fabbri, C Benedetti, A Fassio, S Pilati, NJ Bulleid, A Cabibbo and R Sitia (2000) Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 275(31): 23685–92

    Article  PubMed  Google Scholar 

  • Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69:69–93

    Article  PubMed  Google Scholar 

  • Patel J, AH Patel and J McLauchlan (2001) The transmembrane domain of the hepatitis C virus E2 glycoprotein is required for correct folding of the E1 glycoprotein and native complex formation. Virology 279(1): 58–68

    Article  PubMed  Google Scholar 

  • Patil C and P Walter (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13(3): 349–55

    Article  PubMed  Google Scholar 

  • Paul M and MA Jabbar (1997) Phosphorylation of both phosphoacceptor sites in the HIV-1 Vpu cytoplasmic domain is essential for Vpu-mediated ER degradation of CD4. Virology 232(1): 207–16

    Article  PubMed  Google Scholar 

  • Peterson JR, A Ora, PN Van and A Helenius (1995) Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Mol Biol Cell 6(9): 1173–84

    PubMed  Google Scholar 

  • Piguet V, YL Chen, A Mangasarian, M Foti, JL Carpentier and D Trono (1998) Mechanism of Nef-induced CD4 endocytosis: Nef connects CD4 with the mu chain of adaptor complexes. EMBO J 17(9): 2472–81

    Article  PubMed  Google Scholar 

  • Pollard MG, KJ Travers and JS Weissman (1998) Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1(2): 171–82

    Article  PubMed  Google Scholar 

  • Rehm A, P Stern, HL Ploegh and D Tortorella (2001) Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor. EMBO J 20(7): 1573–82

    Article  PubMed  Google Scholar 

  • Rhee SS and JW Marsh (1994) Human immunodeficiency virus type 1 Nef-induced down-modulation of CD4 is due to rapid internalization and degradation of surface CD4. J Virol 68(8): 5156–63

    PubMed  Google Scholar 

  • Schrag JD, JJ Bergeron, Y Li, S Borisova, M Hahn, DY Thomas and M Cygler (2001) The structure of calnexin, an ER chaperone involved in quality control of protein folding. Mol Cell 8(3): 633–44

    Article  PubMed  Google Scholar 

  • Schwartz O, V Marechal, S Le Gall, F Lemonnier and JM Heard (1996) Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2(3): 338–42

    Article  PubMed  Google Scholar 

  • Senkevich TG, CL White, EV Koonin and B Moss (2002) Complete pathway for protein disulfide bond formation encoded by poxviruses. Proc Natl Acad Sci USA 99(10): 6667–72

    Article  PubMed  Google Scholar 

  • Sevier CS, JW Cuozzo, A Vala, F Aslund and CA Kaiser (2001) A flavoprotein oxidase defines a new endoplasmic reticulum pathway for biosynthetic disulphide bond formation. Nat Cell Biol 3(10): 874–82

    Article  PubMed  Google Scholar 

  • Sitia R, M Neuberger, C Alberini, P Bet, A Fra, C Valetti, G Williams and C Milstein (1990) Developmental regulation of IgM secretion: the role of the carboxy-terminal cysteine. Cell 60(5): 781–90

    Article  PubMed  Google Scholar 

  • Su HL, CL Liao and YL Lin (2002) Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol 76(9):4162–71

    Article  PubMed  Google Scholar 

  • Tardif KD, K Mori and A Siddiqui (2002) Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J Virol 76(15): 7453–9

    Article  PubMed  Google Scholar 

  • Tasab M, MR Batten and NJ Bulleid (2000) Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen. EMBO J 19(10): 2204–11

    Article  PubMed  Google Scholar 

  • Tomazin R, J Boname, NR Hegde, DM Lewinsohn, Y Altschuler, TR Jones, P Cresswell, JA Nelson, SR Riddell and DC Johnson (1999) Cytomegalovirus US2 destroys two components of the MHC class II pathway, preventing recognition by CD4+ T cells. Nat Med 5(9): 1039–43

    Article  PubMed  Google Scholar 

  • Tortorella D, BE Gewurz, MH Furman, DJ Schust and HL Ploegh (2000) Viral subversion of the immune system. Annu Rev Immunol 18:861–926

    Article  PubMed  Google Scholar 

  • Travers KJ, CK Patil, L Wodicka, DJ Lockhart, JS Weissman and P Walter (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101(3): 249–58

    Article  PubMed  Google Scholar 

  • Tsai B, Y Ye and TA Rapoport (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3(4): 246–55

    Article  PubMed  Google Scholar 

  • Tu BP, SC Ho-Schleyer, KJ Travers and JS Weissman (2000) Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science 290(5496): 1571–4

    Article  PubMed  Google Scholar 

  • Tu BP and JS Weissman (2002) The FAD-and O2-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 10(5):983–94

    Article  PubMed  Google Scholar 

  • van der Wal FJ, M Kikkert and E Wiertz (2002) The HCMV gene products US2 and US11 target MHC class I molecules for degradation in the cytosol. Curr Top Microbiol Immunol 269:37–55

    PubMed  Google Scholar 

  • Vossen MT, EM Westerhout, C Soderberg-Naucler and EJ Wiertz (2002) Viral immune evasion: a masterpiece of evolution. Immunogenetics 54(8): 527–42

    Article  PubMed  Google Scholar 

  • Wang L and B Dobberstein (1999) Oligomeric complexes involved in translocation of proteins across the membrane of the endoplasmic reticulum. FEBS Lett 457(3): 316–22

    Article  PubMed  Google Scholar 

  • Ward CL and RR Kopito (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. J Biol Chem 269(41): 25710–8

    PubMed  Google Scholar 

  • Wiertz EJ, TR Jones, L Sun, M Bogyo, HJ Geuze and HL Ploegh (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84(5): 769–79

    Article  PubMed  Google Scholar 

  • Williams M, JF Roeth, MR Kasper, RI Fleis, CG Przybycin and KL Collins (2002) Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 76(23): 12173–84

    Article  PubMed  Google Scholar 

  • Wolin SL and P Walter (1988) Ribosome pausing and stacking during translation of a eukaryotic mRNA. EMBO J 7(11): 3559–69

    PubMed  Google Scholar 

  • York IA, C Roop, DW Andrews, SR Riddell, FL Graham and DC Johnson (1994) A cytosolic herpes simplex virus protein inhibits antigen presentation to CD8+ T lymphocytes. Cell 77(4): 525–35

    Article  PubMed  Google Scholar 

  • Zhang Y, G Nijbroek, ML Sullivan, AA McCracken, SC Watkins, S Michaelis and JL Brodsky (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12(5): 1303–14

    PubMed  Google Scholar 

  • Ziegler H, R Thale, P Lucin, W Muranyi, T Flohr, H Hengel, H Farrell, W Rawlinson and UH Koszinowski (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6(1):57–66

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Maggioni, C., Braakman, I. (2004). Synthesis and Quality Control of Viral Membrane Proteins. In: Marsh, M. (eds) Membrane Trafficking in Viral Replication. Current Topics in Microbiology and Immunology, vol 285. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26764-6_6

Download citation

Publish with us

Policies and ethics