Skip to main content

A process-oriented approach to compute THM problems in porous media - Part 1: Theoretical and informatics background

  • Conference paper
Unsaturated Soils: Numerical and Theoretical Approaches

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 94))

Abstract

Object-oriented (OO) methods become more and more important in order to meet scientific computing challenges, such as the treatment of coupled non-linear multi-field problems with extremely high resolutions. This two-part paper introduces an object-oriented concept for numerical modelling multi-process systems in porous media (Part 1). The C++ implementation of the OO design for process objects (PCS) as a class is described and illustrated with several applications. Due to the importance of the encapsulation of processes as individual PCS objects we denote our concept as an processoriented approach. The presented examples (Part 2) are dealing with thermal (T), hydraulic (H), mechanical (M) and componental processes (C) in bentonite materials, which are used as buDer material for the isolation of hazardous waste in geologic barriers. In particular, we are interested in coupling phenomena such as thermally induced desaturation, non-isothermal consolidation, swelling/shrinking phenomena as well as in a better understanding of the coupled, non-linear THM system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E. E. Alonso, A. Gens, and D. W. Hight. Special problem soils: general report. In Proc. 9th European Conf. on Soil Mechanics and Foundation Engineering, volume 3, Rotterdam, 1987. Balkema.

    Google Scholar 

  • M. A. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12: 155–164, 1941.

    Article  MATH  Google Scholar 

  • G. S. Bodvarsson and C. F. Tsang. Injection and thermal breakthrough in fractured geothermal reservoirs. J. Geophys. Res., 87(B2):1031–1048, 1982.

    Google Scholar 

  • L. Börgesson. Water flow and swelling pressure in non-saturated bentonite-based clay barriers. Engineering Geology, 314:229–237, 1985.

    Article  Google Scholar 

  • M. Borsetto, D. Cricci, T. Hueckel, and A. Peano. On numerical models for the analysis of nuclear waste disposal in geologic clay formations. In R. W. Lewis, editor, Numerical Methods for Transient and Coupled Problems, Swansea, 1984. Pineridge Press.

    Google Scholar 

  • H. Class. Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL-kontaminierten porösen Medien. Dissertation, TU Braunschweig, 2000.

    Google Scholar 

  • M. Emmert. Numerische Modellierung nichtisothermer Gas-Wasser Systeme in porösen Medien. PhD thesis, Insitut für Wasserbau, Universität Stuttgart, 1997.

    Google Scholar 

  • R. W. Falta, K. Pruess, I. Javandel, and P. A. Witherspoon. Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface-2. code validation and application. Water Resources Research, 28(2):451–465, February 1992a.

    Article  Google Scholar 

  • R. W. Falta, K. Pruess, I. Javandel, and P. A. Witherspoon. Numerical modeling of steam injection for the removal of nonaqueous phase liquids from the subsurface-1. numerical formulation. Water Resources Research, 28(2):433–449, February 1992b.

    Article  Google Scholar 

  • D. Gawin, P. Baggio, and B. A. Schrefler. Coupled heat, water and gas flow in deformable porous media. Int. J. Num. Meth. Fluids, 20:969–987, 1995.

    Article  MATH  Google Scholar 

  • A. Gens, A. J. Garcia-Molina, S. Olivella, E. E. Alonso, and F. Huertas. Analysis of a full scale in-situ test simulating repository conditions. Int. J. Anal. Num. Meth. Geomech., 22:515–548, 1998.

    Article  MATH  Google Scholar 

  • M. Geraminegad and S. K. Saxena. A coupled thermoelastic model for saturated-unsaturated porous media. Géotechnique, 36:539–550, 1986.

    Google Scholar 

  • R. Helmig. Multiphase Flow and Transport Processes in the Subsurface. Springer, Berlin, 1997.

    Google Scholar 

  • L. Jing, O. Stephansson, L. Börgesson, M. Chijimatzu, F. Kautsky, and C.-F. Tsang. Decovalex ii project technical report-task 2c. Ski report 99:23. issn 1104-1374, DECOVALEX team, 1999.

    Google Scholar 

  • T. Kanno, T. Fujita, H. Ishikawa, K. Hara, and M. Nakano. Coupled thermo-hydromechanical modelling of bentonite buffer material. Int. J. Numer. Anal. Meth. Geomech., 23:1281–1307, 1999.

    Article  MATH  Google Scholar 

  • M. Kohlmeier, R. Kaiser, O. Kolditz, and W. Zielke. Finite element simulation of consolidation and bentonite swelling in the framework of unsaturated porous media. In: Developments in Water Science, 47:57–64, 2002.

    Google Scholar 

  • O. Kolditz. Non-linear flow in fractured rock. Int. J. Numer. Methods for Heat & Fluid Flow, 11(6):547–575, 2001.

    Article  MATH  Google Scholar 

  • O. Kolditz. Computational methods in environmental fluid mechanics. Springer Science Publisher, Berlin-New York-Tokyo, 2002.

    MATH  Google Scholar 

  • O. Kolditz and S. Bauer. A process-oriented approach to compute multi-field problems in porous media. submitted to Hydroinformatics, 2003.

    Google Scholar 

  • O, Kolditz, J. de Jonge, M. Beinhorn, M. Xie, T. Kalbacher, W. Wang, S. Bauer, C. McDermott, R. Kaiser, and M. Kohlmeier. ROCKFLOW-Theory and users manual, release 3.9 (in preparation). Groundwater modeling group, Center for Applied Geosciences, University of Tuebingen, Institute of Fluid Mechanics, University of Hannover, 2003.

    Google Scholar 

  • R. W. Lewis, P. J. Roberts, and B. A. Schrefler. Finite element modelling of two-phase heat and fluid flow in deforming porous media. Transport in Porous Media, 4:319–334, 1989.

    Article  Google Scholar 

  • R. W. Lewis and B. A. Schrefler. The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, 1998.

    Google Scholar 

  • M. J. Lippmann, T. N. Narasimham, and P. A. Witherspoon. Numerical simulation of reservoir compaction in liquid-dominated geothermal systems. In Proc. 2nd Int. Symposium Land Subsidence, pages 179–189. IAHS, 1976.

    Google Scholar 

  • S. Olivella, J. Carrera, A. Gens, and E. E. Alonso. Nonisothermal multiphase flow of brine and gas through saline media. Transport in Porous Media, 15:271–293, 1994.

    Article  Google Scholar 

  • S. Olivella and A. Gens. Vapour transport in low permeability unsaturated soil with capillary effects. Transport in Porous Media, 40:219–241, 2000.

    Article  Google Scholar 

  • K. Pruess. Modeling of geothermal reservoirs: Fundamental processes, computer simulations and field applications. Geothermics, 19(1):3–15, 1990.

    Article  Google Scholar 

  • K. Pruess and T.N. Narasimhan. On fluid reserves and the production of super-heated steam from fractured, vapor-dominated geothermal reservoirs. J. Geophys. Res., 87(B11):9329–9339, 1982.

    Google Scholar 

  • K. Pruess and T.N. Narasimhan. A practical method for modeling fluid and heat flow in fractured porous media. Society of Petroleum Engineers Journal, 25(1): 14–26, 1985.

    Article  Google Scholar 

  • J. Rutqvist, L. Börgesson, M. Chijimatsu, A. Kobayashi, L. Jing, T. S. Nguyen, J. Noorishad, and C.-F. Tsang. Thermodynamics of partially saturated geologic media: governing equations and formulation of four finite element models. International Journal of Rock Mechanics & Mining Sciences, 38:105–127, 2001.

    Article  Google Scholar 

  • J. Studer, W. Ammann, P. Meier, Ch Müller, and E. Glauser. Verfüllen und Versiegeln von Stollen, Schächten und Bohrlöchern. Technischer Bericht 84-33, Nagra, Baden, Schweiz, 1984.

    Google Scholar 

  • K. Terzaghi. Erdbaumechanik auf bodenphysikalischer Grundlage. Deuticke, Wien, 1925.

    MATH  Google Scholar 

  • S. Tripathy and T. Schanz. A re-examination of swelling pressure of compacted bentonites from gouy-chapman diffusive double layer theory. In De Gennaro and Delage, editors, Int Workshop of Young Doctors in Geomechanics-W(H)YDOC 02, pages 17–19. Ecole Nationale des Ponts et Chaussees, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kolditz, O., Wang, W., de Jonge, J., Xie, M., Bauer, S. (2005). A process-oriented approach to compute THM problems in porous media - Part 1: Theoretical and informatics background. In: Schanz, T. (eds) Unsaturated Soils: Numerical and Theoretical Approaches. Springer Proceedings in Physics, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26737-9_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-26737-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21122-8

  • Online ISBN: 978-3-540-26737-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics