Skip to main content

Thermally-induced pore pressure generation in a nearly-saturated cementitious material

  • Conference paper
Unsaturated Soils: Numerical and Theoretical Approaches

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 94))

Abstract

This paper reviews the thermo-hydro-mechanical behaviour of a cementitious porous material containing a pore space that is incompletely saturated. The incomplete saturation is interpreted in terms of the alteration of the compressibility of the fluid in the porous space rather than the presence of distinct regions of a fluid phase and a gas phase. The paper examines both the experimental and computational modelling of the heating of the plane boundary of a cylinder made of a cementitious material. The parametric evaluations of the computational results point to the appreciable influences of the near saturation compressibility effects on the thermally-induced pore pressure response within the cementitious medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auriault, J.-L., Geindreau, C., Royer, P., Bloch, J.-F., Boutin, C. and Lewandowska, J. (Eds.) (2002) Poromechanics II. Proc. 2nd Biot Conference on Poromechanics, Grenoble, France. A.A. Balkema, The Netherlands.

    Google Scholar 

  • Biot, M.A. 1941. General theory of three-dimensional consolidation. J. Appl. Phys., 12, 155–164.

    Article  MATH  Google Scholar 

  • Booker, J.R. and Savvidou, C. (1985) Consolidation around a point heat source. Int. J. Num. Anal. Meth. Geomech., 9: 173–184.

    Article  Google Scholar 

  • Booker, J.R. and Small, J.C. (1975) An investigation of the stability of numerical solution of Biot’s equations of consolidation. Int. J. Solids. Struct., 11, 907–917.

    Article  MATH  Google Scholar 

  • Cheng, A.H.-D., Detournay, E. and Abousleiman, Y. (Eds.) (1998) Poroelasticity. Maurice A. Biot Memorial Issue. Int. J. Solids Structures, 35: 4513–5031.

    Google Scholar 

  • de Boer, R. (Ed.) (1999) Porous Media: Theory and Experiments. Kluwer Academic Publ., Dordrecht, The Netherlands.

    Google Scholar 

  • de Boer, R. (2000) Theory of Porous Media. Springer Verlag, Berlin.

    MATH  Google Scholar 

  • Desai, C.S. and Christian, J.T. (Eds.) (1977) Numerical Methods in Geotechnical Engineering. John Wiley, New York.

    MATH  Google Scholar 

  • Ehlers, W. and Bluhm, J. (Eds.) (2002) Porous Media: Theory, Experiments and Numerical Applications. Springer-Verlag, Berlin.

    MATH  Google Scholar 

  • Lewis, R.W. and Schrefler, B.A. (1998) The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley, New York.

    MATH  Google Scholar 

  • McNamee, J. and Gibson, R.E. (1960) Plane strain and axisymmetric problems of the consolidation of a semi-infinite clay stratum. Q. J. Mech. Appl. Math., 13: 210–227.

    MathSciNet  MATH  Google Scholar 

  • Nguyen, T.S. and Selvadurai, A.P.S. (1995) Coupled thermal-mechanical-hydrological behaviour of sparsely fractured rock: Implications for nuclear waste disposal. Int. J. Rock Mech. Min. Sci. and Geomech Abstr., 32: 465–479.

    Article  Google Scholar 

  • Rice, J.R. and Cleary, M.P. (1976) Some basic stress diffusion solution for fluid-saturated elastic porous media with compressible constituents. Rev. Geophys. Space Phys., 14:227–241.

    Google Scholar 

  • Selvadurai, A.P.S. (1995) Experimental Modelling of Thermal Consolidation Effects Around a High Level Waste Repository, Atomic Energy Control Board Project Report 5.146.1, Ottawa, Canada.

    Google Scholar 

  • Selvadurai, A.P.S. (Ed.) (1996a) Mechanics of Poroelastic Media. Kluwer Academic Publ., Dordrecht, The Netherlands.

    MATH  Google Scholar 

  • Selvadurai, A.P.S. (1996b) Heat-induced moisture movement in a clay barrier I. Experimental modelling of borehole emplacement. Engineering Geology, 41: 239–256.

    Article  Google Scholar 

  • Selvadurai, A.P.S. (1996c) Heat-induced moisture movement in a clay barrier II. Computational modelling and comparison with experimental results. Engineering Geology, 41:219–238.

    Article  Google Scholar 

  • Selvadurai, A.P.S. (2001) On some recent developments in poroelasticity, IACMAG 2001, Proc. 10th Int. Conf. on Comp. Meth. Adv. Geomech., (C.S. Desai et al. Eds.) Tucson, Arizona. A.A. Balkema, The Netherlands, 2:1761–1769.

    Google Scholar 

  • Selvadurai, A.P.S. (2002) Influence of pressurized water influx on the hygrothermal behaviour of an engineered clay barrier in a waste emplacement borehole. Engineering Geology, 64: 157–178.

    Article  Google Scholar 

  • Selvadurai, A.P.S. and Nguyen, T.S. (1995) Computational modelling of isothermal consolidation of fractured media. Comp. Geotech., 17:39–73.

    Article  Google Scholar 

  • Skempton, A.W. (1954) The pore pressure coefficients A and B. Geotechnique, 4: 143–147.

    Google Scholar 

  • Smith, I.M. and Griffiths, D.V. (1988) Programming The Finite Element Method. John Wiley, New York.

    MATH  Google Scholar 

  • Thimus, J.-F., Abousleiman, Y., Cheng, A.H.-D., Coussy, O. and Detournay, E. (1998). Poromechanics. A Tribute to Maurice A. Biot. Proc. Biot Conference on Poromechanics, Louvain-La-Neuve, Belgium. A.A. Balkema, Rotterdam.

    Google Scholar 

  • Zienkiewicz, O.C. and Taylor, R.L. (2000) The Finite Element Method Vols. 1–3. Butterworth-Heinemann, Massachusetts.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Selvadurai, A.P.S. (2005). Thermally-induced pore pressure generation in a nearly-saturated cementitious material. In: Schanz, T. (eds) Unsaturated Soils: Numerical and Theoretical Approaches. Springer Proceedings in Physics, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26737-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-26737-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21122-8

  • Online ISBN: 978-3-540-26737-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics