Skip to main content

Tensile Strength of Compacted Clays

  • Conference paper

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 93))

Synopsis

The paper presents experimental results linking matric suction and tensile strength of compacted clays. Test results from a cohesive soil are presented and discussed with respect to the soil structure and the interaction of soil and water. It is assumed that two main groups of pores can be clearly identified in compacted clays; the pores between aggregates (interaggregate pores) and pores between particles (intraaggregate pores ). Based on a description of soil-water-interaction an expected behaviour, describing tensile strength as a function of matric suction, is derived and compared with the experimental results. The laboratory test results indicate that there is a strong correlation between the pore size distribution (assessed by interpretation of the soil water characteristic curve SWCC) and the tensile strength of compacted soils. Furthermore, the test results are compared by using micro-mechanical considerations of the interaction between the skeleton of unsaturated soils (interparticle contact force) and by using numerical calculations with an elastic relationship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso, E. E., Gens E., Josa, A. 1990. A constitutive model for partially saturated soils. Géotechnique 40, No. 4, pp. 405–430

    Google Scholar 

  • Brüggemann, R. 1998. Zugfestigkeit verdichteter Tone als Funktion des Wassergehalts. Diplomarbeit. Institut für Grundbau und Bodenmechanik, Ruhr-Universität Bochum. unveröffentlicht

    Google Scholar 

  • Durner, W. 1991. Vorhersage der hydraulischen Leitfähigkeit strukturierter Böden. Diss., Bayreuther Bodenkundliche Berichte, Band 20

    Google Scholar 

  • Endell, K. 1941. Stand der Erkenntnisse über die Quellfähigkeit von Tonen, ihre innere Ursache und Bestimmung, Bautechnik, Heft 19, Berlin

    Google Scholar 

  • Heibrock, G. 1996. Zur Rissbildung durch Austrocknung in mineralischen Abdichtungsschichten an der Basis von Deponien. Schriftenreihe des Instituts für Grundbau an der Ruhr-Universität Bochum, Heft 26

    Google Scholar 

  • Heibrock, G. 1997. Desiccation cracking of mineral sealing liners. in: Proceedings Sardinia 1997, 6. International Waste Management and Landfill Symposium, CISA, Cagliari

    Google Scholar 

  • Jasmund, K., Lagaly, G. 1993. Tonminerale und Tone: Struktur, Eigenschaften Anwendungen in Industrie und Umgebung. Stenkopff, Darmstadt

    Google Scholar 

  • Mitchell, J. K. 1993. Fundamentals of Soil Behaviour. J. Wiley & Sons, London

    Google Scholar 

  • Molenkamp, F., Nazemi, A. H. 2003. Interactions between two rough spheres, water bridge and water vapour. Géotechnique 53, No. 2, pp. 255–264

    Google Scholar 

  • Nagaraj, T. et al. 1990. Discussion on « Change in pore size distribution due to consolidation of clays » by Griffith and Joshi, Géotechnique, Vol. 40 No. 2

    Google Scholar 

  • Nagaraj, T., Murthy, S. 1986. A Critical reappraisal of compression index equations. Géotechnique 36, No. 1, pp. 27–32.

    Google Scholar 

  • Rumpf, H., Schubert, H. 1978. Adhesion forces in agglomeration processes. in Onada & Hench: Ceramic processing before firing, J. Wiley a. Sons, Inc., London

    Google Scholar 

  • Schubert, K. 1982. Kapillarität in porösen Feststoffsystemen. Springer Verlag, Heidelberg

    Google Scholar 

  • Snyder, V. A., Miller, R. D. 1985. Tensile strength of unsaturated soils. Soil Sci. Soc. Am. J., Vol. 49: 58–65

    Google Scholar 

  • Stoffregen, H. 1997. Bodeuntersuchungen an Kaolin. Fachgebiet der Bodenkunde und Regionale Bodenkunde, Institut für Ökologie, TU Berlin

    Google Scholar 

  • Thomas, H. R., Cleall, P. J., Seetharam, S. C. 2002. Numerical modelling of the thermal-hydraulic-chemical-mechanical behaviour of unsaturated clay. Environmental Geomechanics. Monte Verità, pp. 125–136

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heibrock, G., Zeh, R.M., Witt, K.J. (2005). Tensile Strength of Compacted Clays. In: Schanz, T. (eds) Unsaturated Soils: Experimental Studies. Springer Proceedings in Physics, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26736-0_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-26736-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21121-1

  • Online ISBN: 978-3-540-26736-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics