Skip to main content

Aminoglycoside Kinases and Antibiotic Resistance

  • Chapter
  • 905 Accesses

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 167))

Abstract

The evolution of antibiotic-resistant bacteria represents a serious public health concern. The appearance of strains with resistance to multiple antibiotics threatens to render some infections untreatable by existing drugs. As a result, there is considerable interest in understanding the mechanisms of antibiotic resistance and in identifying ways in which antibiotic resistance can be overcome. Aminoglycoside antibiotics are broad-spectrum bactericidal compounds that are commonly used in the treatment of serious nosocomial infections. They exert their activity by binding to the A-site of the bacterial 30S ribosomal subunit where they impair the fidelity of protein translation. A number of bacterial strains have developed resistance to many aminoglycosides as a result of their acquisition of aminoglycoside-modifying enzymes that inactivate the antibiotic by reducing its affinity for the bacterial ribosome. These modifying enzymes can be classified into three groups according to the identity of the group used to modify the antibiotic substrate—aminoglycoside acetyltransferases, aminoglycoside phosphotransferases (kinases) and aminoglycoside nucleotidyltransferases. One of the best-understood aminoglycoside-modifying enzymes is aminoglycoside 3′-phosphotransferase type IIIa [APH (3′)-IIIa]. This enzyme catalyses the transfer of a phosphate moiety from ATP to a range of aminoglycoside substrates. Surprisingly, when the three-dimensional atomic structure of APH (3′)-IIIa was determined, it was found to possess striking similarity to eukaryotic protein kinases. Strategies to overcome resistance to aminoglycoside antibiotics are multifaceted and include: (1) novel aminoglycosides that are either not modified, or have low affinity for modifying enzymes, (2) mechanism-based inhibitors that exploit the enzyme’s activity, (3) inhibitors of eukaryotic protein kinases that bind in the nucleotide-binding pocket, (4) bridged molecules that interact with both the nucleotide and aminoglycoside binding sites and (5) cationic peptides that resemble protein kinase inhibitors. By pursuing these leads, it is hoped that compounds will be developed that will allow aminoglycoside antibiotics to remain useful components of the physician’s armamentarium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alper PB, Hendrix M, Sears P, Wong C-H (1998) Probing the specificity of aminoglycoside-ribosomal RNA interactions with designed synthetic analogs. J Am Chem Soc 120:1965–1978

    Article  CAS  Google Scholar 

  • Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H (1982) Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327–36

    Article  PubMed  CAS  Google Scholar 

  • Berman JD, Fleckenstein L (1991) Pharmacokinetic justification of antiprotozoal therapy. A US perspective. Clin Pharmacokinet 21:479–493

    PubMed  CAS  Google Scholar 

  • Boehr DD, Draker K, Koteva K, Bains M, Hancock RE, Wright GD (2003) Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem Biol 10:189–96

    Article  PubMed  CAS  Google Scholar 

  • Boehr DD, Lane WS, Wright GD (2001a) Active site labeling of the gentamicin resistance enzyme AAC(6′)-APH(2″) by the lipid kinase inhibitor wortmannin. Chem Biol 8:791–800

    Article  PubMed  CAS  Google Scholar 

  • Boehr DD, Thompson PR, Wright GD (2001b) Molecular mechanism of aminoglycoside antibiotic kinase APH(3′)-IIIa: roles of conserved active site residues. J Biol Chem 276:23929–36

    Article  PubMed  CAS  Google Scholar 

  • Boehr DD, Farley AR, Wright GD, Cox JR (2002) Analysis of the pi-pi stacking interactions between the aminoglycoside antibiotic kinase APH(3′)-IIIa and its nucleotide ligands. Chem Biol 9:1209–17

    Article  PubMed  CAS  Google Scholar 

  • Burk DL, Berghuis AM (2002) Protein kinase inhibitors and antibiotic resistance. Pharmacol Ther 93:283–92

    Article  PubMed  CAS  Google Scholar 

  • Burk DL, Hon WC, Leung AK-W, Berghuis AM (2001) Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry 40:8756–8764

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, Morgan-Warren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    PubMed  CAS  Google Scholar 

  • Cundliffe E (1989) How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 43:207–33

    Article  PubMed  CAS  Google Scholar 

  • Daigle DM, McKay GA, Wright GD (1997) Inhibition of aminoglycoside antibiotic resistance enzymes by protein kinase inhibitors. J Biol Chem 272:24755–8

    Article  PubMed  CAS  Google Scholar 

  • Daigle DM, Hughes DW, Wright GD (1999a) Prodigious substrate specificity of AAC(6′)-APH(2″), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci. Chem Biol 6:99–110

    PubMed  CAS  Google Scholar 

  • Daigle DM, McKay GA, Thompson PR, Wright GD (1999b) Aminoglycoside antibiotic phosphotransferases are also serine protein kinases. Chem Biol 6:11–8

    PubMed  CAS  Google Scholar 

  • Davies JE (1991) Aminoglycoside-aminocyclitol antibiotics and their modifying enzymes. In: Lorian V (ed) Antibiotics in laboratory medicine. Williams & Wilkins, Baltimore, pp 691–713

    Google Scholar 

  • Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D (1996) Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity. J Biol Chem 271:26157–64

    PubMed  CAS  Google Scholar 

  • Ferretti JJ, Gilmore KS, Courvalin P (1986) Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol 167:631–8

    PubMed  CAS  Google Scholar 

  • Fong DH, Berghuis AM (2002) Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry. EMBO J 21:2323–2331

    Article  PubMed  CAS  Google Scholar 

  • Forge A, Schacht J (2000) Aminoglycoside antibiotics. Audiol Neurootol 5:3–22

    Article  PubMed  CAS  Google Scholar 

  • Fourmy D, Recht MI, Blanchard SC, Puglisi JD (1996) Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274:1367–71

    Article  PubMed  CAS  Google Scholar 

  • Fourmy D, Recht MI, Puglisi JD (1998) Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 S rRNA. J Mol Biol 277:347–62

    PubMed  CAS  Google Scholar 

  • Fujimura S, Tokue Y, Takahashi H, Nukiwa T, Hisamichi K, Mikami T, Watanabe A (1998) A newly recognized acetylated metabolite of arbekacin in arbekacin-resistant strains of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 41:495–7

    Article  PubMed  CAS  Google Scholar 

  • Fujimura S, Tokue Y, Takahashi H, Kobayashi T, Gomi K, Abe T, Nukiwa T, Watanabe A (2000) Novel arbekacin-and amikacin-modifying enzyme of methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 190:299–303

    Article  PubMed  CAS  Google Scholar 

  • Gray GS, Fitch WM (1983) Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance gene from Staphylococcus aureus. Mol Biol Evol 1:57–66

    PubMed  CAS  Google Scholar 

  • Greenberg WA, Priestley ES, Sears PS, Alper PB, Rosenbohm C, Hendrix M, Hung S-C, Wong C-H (1999) Design and synthesis of new aminoglycoside antibiotics containing neamine as an optimal core structure: correlation of antibiotic activity with in vitro inhibition of translation. J Am Chem Soc 121:6527–6541

    Article  CAS  Google Scholar 

  • Haddad J, Vakulenko S, Mobashery S (1999) An antibiotic cloaked by its own resistance enzyme. J Am Chem Soc 121:11922–11923

    Article  CAS  Google Scholar 

  • Haddad J, Kotra LP, Llano-Sotelo B, Kim C, Azucena EF Jr, Liu M, Vakulenko SB, Chow CS, Mobashery S (2002) Design of novel antibiotics that bind to the ribosomal acyltransfer site. J Am Chem Soc 124:3229–37

    Article  PubMed  CAS  Google Scholar 

  • Holm SE, Hill B, Lowestad A, Maller R, Vikerfors T (1983) A prospective, randomized study of amikacin and gentamicin in serious infections with focus on efficacy, toxicity and duration of serum levels above the MIC. J Antimicrob Chemother 12:393–402

    PubMed  CAS  Google Scholar 

  • Hon WC, McKay GA, Thompson PR, Sweet RM, Yang DS, Wright GD, Berghuis AM (1997) Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89:887–95

    Article  PubMed  CAS  Google Scholar 

  • Hotta K, Zhu CB, Ogata T, Sunada A, Ishikawa J, Mizuno S, Ikeda Y, Kondo S (1996) Enzymatic 2′-N-acetylation of arbekacin and antibiotic activity of its product. J Antibiot (Tokyo) 49:458–64

    PubMed  CAS  Google Scholar 

  • Hotta K, Sunada A, Ishikawa J, Mizuno S, Ikeda Y, Kondo S (1998) The novel enzymatic 3″-N-acetylation of arbekacin by an aminoglycoside 3-N-acetyltransferase of Streptomyces origin and the resulting activity. J Antibiot (Tokyo) 51:735–42

    PubMed  CAS  Google Scholar 

  • Ida T, Okamoto R, Shimauchi C, Okubo T, Kuga A, Inoue M (2001) Identification of aminoglycoside-modifying enzymes by susceptibility testing: epidemiology of methicillin-resistant Staphylococcus aureus in Japan. J Clin Microbiol 39:3115–21

    Article  PubMed  CAS  Google Scholar 

  • Inouye S, Tamura A, Niizato T, Takeuchi T, Hamada M, Kondo S (1996) Antibacterial activity and nephrotoxicity of two novel 2″-amino derivatives of arbekacin. J Infect Chemother 2:84–89

    CAS  Google Scholar 

  • Johnson LN, Noble ME, Owen DJ (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85:149–58

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi H, Naito T, Nakagawa S, Fujisawa KI (1972) BB-K 8, a new semisynthetic aminoglycoside antibiotic. J Antibiot (Tokyo) 25:695–708

    PubMed  CAS  Google Scholar 

  • Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253:407–14

    PubMed  CAS  Google Scholar 

  • Kondo S, Iinuma K, Yamamoto H, Ikeda Y, Maeda K (1973a) Letter: Synthesis of (S)-4-amino-2-hydroxybutyryl derivatives of 3′,4′-dideoxykanamycin B and their antibacterial activities. J Antibiot (Tokyo) 26:705–7

    PubMed  CAS  Google Scholar 

  • Kondo S, Iinuma K, Yamamoto H, Maeda K, Umezawa H (1973b) Letter: Syntheses of 1-n-(S)-4-amino-2-hydroxybutyryl)-kanamycin B and −3′, 4′-dideoxykanamycin B active against kanamycin-resistant bacteria. J Antibiot (Tokyo) 26:412–5

    PubMed  CAS  Google Scholar 

  • Kondo S, Shibahara S, Usui T, Kudo T, Tamura A, Gomi S, Ikeda Y, Ikeda D, Takeuchi T (1993a) New 2″-amino derivatives of arbekacin, potent aminoglycoside antibiotics against methicillin-resistant Staphylococcus aureus. J Antibiot (Tokyo) 46:531–4

    PubMed  CAS  Google Scholar 

  • Kondo S, Tamura A, Gomi S, Ikeda Y, Takeuchi T, Mitsuhashi S (1993b) Structures of enzymatically modified products of arbekacin by methicillin-resistant. Staphylococcus aureus. J Antibiot (Tokyo) 46:310–5

    PubMed  CAS  Google Scholar 

  • Kondo S, Ikeda Y, Ikeda D, Takeuchi T, Usui T, Ishii M, Kudo T, Gomi S, Shibahara S (1994) Synthesis of 2″-amino-2″-deoxyarbekacin and its analogs having potent activity against methicillin-resistant Staphylococcus aureus. J Antibiot (Tokyo) 47:821–32

    PubMed  CAS  Google Scholar 

  • Kondo S, Hotta K (1999) Semisynthetic aminoglycoside antibiotics: Development and enzymatic modifications. J Infect Chemother 5:1–9

    Article  PubMed  CAS  Google Scholar 

  • Leclercq R, Dutka-Malen S, Brisson-Noel A, Molinas C, Derlot E, Arthur M, Duval J, Courvalin P (1992) Resistance of enterococci to aminoglycosides and glycopeptides. Clin Infect Dis 15:495–501

    PubMed  CAS  Google Scholar 

  • Liu M, Haddad J, Azucena E, Kotra LP, Kirzhner M, Mobashery S (2000) Tethered bisubstrate derivatives as probes for mechanism and as inhibitors of aminoglycoside 3′-phosphotransferases. J Org Chem 65:7422–31

    PubMed  CAS  Google Scholar 

  • Llano-Sotelo B, Azucena EF Jr, Kotra LP, Mobashery S, Chow CS (2002) Aminoglycosides modified by resistance enzymes display diminished binding to the bacterial ribosomal aminoacyl-tRNA site. Chem Biol 9:455–63

    PubMed  CAS  Google Scholar 

  • Madhusudan, Trafny EA, Xuong NH, Adams JA, Ten Eyck LF, Taylor SS, Sowadski JM (1994) cAMP-dependent protein kinase: crystallographic insights into substrate recognition and phosphotransfer. Protein Sci 3:176–87

    PubMed  CAS  Google Scholar 

  • Martel A, Masson M, Moreau N, Le Goffic F (1983) Kinetic studies of aminoglycoside acetyltransferase and phosphotransferase from Staphylococcus aureus RPAL. Relationship between the two activities. Eur J Biochem 133:515–21

    Article  PubMed  CAS  Google Scholar 

  • McKay G, Thompson P, Wright G (1994a) Broad spectrum aminoglycoside phosphotransferase type III from Enterococcus: overexpression, purification, and substrate specificity. Biochemistry 33:6936–6944

    PubMed  CAS  Google Scholar 

  • McKay GA, Robinson RA, Lane WS, Wright GD (1994b) Active-site labeling of an aminoglycoside antibiotic phosphotransferase (APH(3′)-IIIa). Biochemistry 33:14115–20

    PubMed  CAS  Google Scholar 

  • McKay GA, Wright GD (1995) Kinetic mechanism of aminoglycoside phosphotransferase type IIIa. Evidence for a Theorell-Chance mechanism. J Biol Chem 270:24686–92

    PubMed  CAS  Google Scholar 

  • McKay GA, Roestamadji J, Mobashery S, Wright GD (1996) Recognition of aminoglycoside antibiotics by enterococcal-staphylococcal aminoglycoside 3′-phosphotransferase type IIIa: role of substrate amino groups. Antimicrob Agents Chemother 40:2648–50

    PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1987) Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327:389–94

    Article  PubMed  CAS  Google Scholar 

  • Nagabhushan TL, Cooper AB, Tsai H, Daniels PJ, Miller GH (1978) The syntheses and biological properties of 1-N-(S-4-amino-2-hydroxybutyryl)-gentamicin B and 1-N-(S-3-amino-2-hydroxypropionyl)-gentamicin B. J Antibiot (Tokyo) 31:681–7

    PubMed  CAS  Google Scholar 

  • Nurizzo D, Shewry SC, Perlin MH, Brown SA, Dholakia JN, Fuchs RL, Deva T, Baker EN, Smith CA (2003) The crystal structure of aminoglycoside-3′-phosphotransferase-IIa, an enzyme responsible for antibiotic resistance. J Mol Biol 327:491–506

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Murphy FV, Tarry MJ, Ramakrishnan V (2002) Selection of tRNA by the ribosome requires a transition from an open to a closed form. Cell 111:721–32

    Article  PubMed  CAS  Google Scholar 

  • Oka A, Sugisaki H, Takanami M (1981) Nucleotide sequence of the kanamycin resistance transposon Tn903. J Mol Biol 147:217–26

    Article  PubMed  CAS  Google Scholar 

  • Owen DJ, Noble ME, Garman EF, Papageorgiou AC, Johnson LN (1995) Two structures of the catalytic domain of phosphorylase kinase: an active protein kinase complexed with substrate analogue and product. Structure 3:467–82

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou B, Courvalin P (1988) Dispersal in Campylobacter spp. of aphA-3, a kanamycin resistance determinant from gram-positive cocci. Antimicrob Agents Chemother 32:945–8

    PubMed  CAS  Google Scholar 

  • Pape T, Wintermeyer W, Rodnina MV (2000) Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat Struct Biol 7:104–7

    PubMed  CAS  Google Scholar 

  • Powis G, Bonjouklian R, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G, et al (1994) Wortmannin, a potent and selective inhibitor of phosphatidylinositol-3-kinase. Cancer Res 54:2419–23

    PubMed  CAS  Google Scholar 

  • Rao VD, Misra S, Boronenkov IV, Anderson RA, Hurley JH (1998) Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation. Cell 94:829–39

    Article  PubMed  CAS  Google Scholar 

  • Rodnina MV, Daviter T, Gromadski K, Wintermeyer W (2002) Structural dynamics of ribosomal RNA during decoding on the ribosome. Biochimie 84:745–54

    Article  PubMed  CAS  Google Scholar 

  • Roestamadji J, Mobashery S (1998) The use of neamine as a molecular template: inactivation of bacterial antibiotic resistance enzyme aminoglycoside 3′-phosphotransferase type IIa. Bioorg Med Chem Lett 8:3483–3486

    Article  PubMed  CAS  Google Scholar 

  • Roestamadji J, Grapsas I, Mobashery S (1995a) Loss of individual electrostatic interactions between aminoglycoside antibiotics and resistance enzymes as an effective means to overcoming bacterial drug resistance. J Am Chem Soc 117:11060–11069

    CAS  Google Scholar 

  • Roestamadji J, Grapsas I, Mobashery S (1995b) Mechanism-based inactivation of bacterial aminoglycoside 3′-phosphotransferases. J Am Chem Soc 117:80–84

    CAS  Google Scholar 

  • Russell RJ, Murray JB, Lentzen G, Haddad J, Mobashery S (2003) The complex of a designer antibiotic with a model aminoacyl site of the 30S ribosomal subunit revealed by X-ray crystallography. J Am Chem Soc 125:3410–1

    PubMed  CAS  Google Scholar 

  • Schatz A, Bugie E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Proc Soc Exp Biol Med 55:66–69

    CAS  Google Scholar 

  • Schmitz FJ, Fluit AC, Gondolf M, Beyrau R, Lindenlauf E, Verhoef J, Heinz HP, Jones ME (1999) The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J Antimicrob Chemother 43:253–9

    PubMed  CAS  Google Scholar 

  • Shaw KJ, Rather PN, Hare RS, Miller GH (1993) Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 57:138–163

    PubMed  CAS  Google Scholar 

  • Siregar JJ, Miroshnikov K, Mobashery S (1995) Purification, characterization, and investigation of the mechanism of aminoglycoside 3′-phosphotransferase type Ia. Biochemistry 34:12681–8

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Baker EN (2002) Aminoglycoside antibiotic resistance by enzymatic deactivation. Curr Drug Targets Infect Disord 2:143–60

    Article  PubMed  CAS  Google Scholar 

  • Sucheck SJ, Wong AL, Koeller KM, Boehr DD, Draker K-a, Sears P, Wright GD, Wong C-H (2000) Design of bifunctional antibiotics that target bacterial rRNA and inhibit resistance-causing enzymes. J Am Chem Soc 122:5230–5231

    Article  CAS  Google Scholar 

  • Taylor DE, Yan W, Ng LK, Manavathu EK, Courvalin P (1988) Genetic characterization of kanamycin resistance in Campylobacter coli. Ann Inst Pasteur Microbiol 139:665–76

    PubMed  CAS  Google Scholar 

  • Taylor SS, Knighton DR, Zheng J, Ten Eyck LF, Sowadski JM (1992) Structural framework for the protein kinase family. Annu Rev Cell Biol 8:429–62

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Skeggs PA, Cundliffe E (1985) Methylation of 16S ribosomal RNA and resistance to the aminoglycoside antibiotics gentamicin and kanamycin determined by DNA from the gentamicin-producer, Micromonospora purpurea. Mol Gen Genet 201:168–73

    Article  PubMed  CAS  Google Scholar 

  • Thompson PR, Hughes DW, Wright GD (1996a) Mechanism of aminoglycoside 3′-phosphotransferase type IIIa: His188 is not a phosphate-accepting residue. Chem Biol 3:747–55

    Article  PubMed  CAS  Google Scholar 

  • Thompson PR, Hughes DW, Wright GD (1996b) Regiospecificity of aminoglycoside phosphotransferase from Enterococci and Staphylococci (APH(3′)-IIIa). Biochemistry 35:8686–8695

    Article  PubMed  CAS  Google Scholar 

  • Trieu-Cuot P, Courvalin P (1983) Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5″-aminoglycoside phosphotransferase type III. Gene 23:331–41

    Article  PubMed  CAS  Google Scholar 

  • Tsukiura H, Saito K, Kobaru S, Konishi M, Kawaguchi H (1973) Aminoglycoside antibiotics. IV. BU-1709 E1 and E2, new aminoglycoside antibiotics related to the butirosins. J Antibiot (Tokyo) 26:386–8

    PubMed  CAS  Google Scholar 

  • Udo EE, Dashti AA (2000) Detection of genes encoding aminoglycoside-modifying enzymes in staphylococci by polymerase chain reaction and dot blot hybridization. Int J Antimicrob Agents 13:273–9

    PubMed  CAS  Google Scholar 

  • Umezawa H, Umezawa S, Tsuchiya T, Okazaki Y (1971a) 3′,4′-dideoxy-kanamycin B active against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa. J Antibiot (Tokyo) 24:485–7

    PubMed  CAS  Google Scholar 

  • Umezawa S, Tsuchiya T, Muto R, Nishimura Y, Umezawa H (1971b) Synthesis of 3′-deoxykanamycin effective against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa. J Antibiot (Tokyo) 24:274–6

    PubMed  CAS  Google Scholar 

  • Vakulenko SB, Mobashery S (2003) Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev 16:430–50

    Article  PubMed  CAS  Google Scholar 

  • Vicens Q, Westhof E (2003) Molecular recognition of aminoglycoside antibiotics by ribosomal RNA and resistance enzymes: an analysis of x-ray crystal structures. Biopolymers 70:42–57

    Article  PubMed  CAS  Google Scholar 

  • Wright GD, Berghuis AM, Mobashery S (1998) Aminoglycoside antibiotics. Structures, functions, and resistance. Adv Exp Med Biol 456:27–69

    PubMed  CAS  Google Scholar 

  • Wright JJ (1976) Synthesis of 1-N-ethylsisomicin: a broad-spectrum semisynthetic aminoglycoside antibiotic. J Chem Soc Chem Commun 6:206–208

    Google Scholar 

  • Wu M, Maier E, Benz R, Hancock RE (1999) Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Biochemistry 38:7235–42

    PubMed  CAS  Google Scholar 

  • Wymann MP, Bulgarelli-Leva G, Zvelebil MJ, Pirola L, Vanhaesebroeck B, Waterfield MD, Panayotou G (1996) Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 16:1722–33

    PubMed  CAS  Google Scholar 

  • Xu RM, Carmel G, Sweet RM, Kuret J, Cheng X (1995) Crystal structure of casein kinase-1, a phosphate-directed protein kinase. EMBO J 14:1015–23

    PubMed  CAS  Google Scholar 

  • Xu RM, Carmel G, Kuret J, Cheng X (1996) Structural basis for selectivity of the isoquinoline sulfonamide family of protein kinase inhibitors. Proc Natl Acad Sci U S A 93:6308–13

    PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hendrickson WA (1996) Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384:484–9

    Article  PubMed  CAS  Google Scholar 

  • Zheng J, Knighton DR, ten Eyck LF, Karlsson R, Xuong N, Taylor SS, Sowadski JM (1993) Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 32:2154–61

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Adams JA (1997) Is there a catalytic base in the active site of cAMP-dependent protein kinase? Biochemistry 36:2977–84

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Fong, D.H., Burk, D.L., Berghuis, A.M. (2005). Aminoglycoside Kinases and Antibiotic Resistance. In: Pinna, L.A., Cohen, P.T. (eds) Inhibitors of Protein Kinases and Protein Phosphates. Handbook of Experimental Pharmacology, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26670-4_7

Download citation

Publish with us

Policies and ethics