Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 167))

Abstract

The AGC group of protein kinases comprises a number of pharmacologically important members—targets for small molecule inhibitors of therapeutic value. Crystal structure data assist in the design of new or improved inhibitory molecules. Protein kinase A (PKA), one of the longest and best-known members of the AGC kinase group, has been cocrystallized with many AGC group inhibitors from highly diverse chemical groups, including isoquinoline derivatives, staurosporine and bisindolylmaleimide cognates, and balanol and pyridine derivatives, thus providing structural information about binding modes, selectivity and cross selectivity. The creation of ‘ersatz’ kinases by mutating the inhibitor binding site of PKA to resemble other fellow kinases from the AGC group and the cocrystallization of these ersatz kinases with small molecules as well as cocrystal structures of other AGC kinases like 3-phosphoinositide-dependent kinase 1 (PDK1) with staurosporine and bisindolylmaleimide derivatives helps in the identification and exploration of factors governing selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akamine P, Madhusudan Wu J, Xuong NH, Ten Eyck LF, Taylor SS (2003) Dynamic features of cAMP-dependent protein kinase revealed by apoenzyme crystal structure. J Mol Biol 327:159–171

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, Cohen P (1998) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62

    Article  PubMed  CAS  Google Scholar 

  • Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, Gaffney P, Reese CB, MacDougall CN, Harbison D, Ashworth A, Bownes M (1997a) 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 7:776–789

    PubMed  CAS  Google Scholar 

  • Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997b) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7:261–269

    PubMed  CAS  Google Scholar 

  • Amano M, Mukai H, Ono Y, Chihara K, Matsui T, Hamajima Y, Okawa K, Iwamatsu A, Kaibuchi K (1996) Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science 271:648–650

    PubMed  CAS  Google Scholar 

  • Amano M, Fukata Y, Kaibuchi K (2000) Regulation and functions of Rho-associated kinase. Exp Cell Res 261:44–51

    Article  PubMed  CAS  Google Scholar 

  • Aubol BE, Nolen B, Shaffer J, Ghosh G, Adams JA (2003) Novel destabilization of nucleotide binding by the gamma phosphate of ATP in the yeast SR protein kinase Sky1p. Biochemistry 42:12813–12820

    Article  PubMed  CAS  Google Scholar 

  • Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes CP, Alessi DR (1999) PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 9:393–404

    Article  PubMed  CAS  Google Scholar 

  • Balendran A, Biondi RM, Cheung PCF, Casamayor A, Deak M, Alessi DR (2000) A 3-phosphoinositide-dependent protein kinase-1 (PDK1) docking site is required for the phosphorylation of protein kinase C zeta (PKC zeta) and PKC-related kinase 2 by PDK1. J Biol Chem 275:20806–20813

    Article  PubMed  CAS  Google Scholar 

  • Barbier P, Huber I, Schneider F, Stadlwieser J, Taylor S (1995) Preparation of 3-amino/hydroxy-4-[4-benzoylphenylcarboxylamino/oxy]azepine and homolog protein kinase inhibitors. (F.Hoffmann-La Roche Ag:Switz [663393]: pp 1–47 EP663393

    Google Scholar 

  • Barbier P, Stadlwieser J, Taylor S (1997) Novel azepanes and their ring homologs for therapy and prophylaxis of protein kinase mediated diseases. (F. Hoffmann-La Roche Ag:Switz [9702249]:pp 1–43 WO9702249

    Google Scholar 

  • Battistutta R, De Moliner E, Sarno S, Zanotti G, Pinna LA (2001) Structural features underlying selective inhibition of protein kinase CK2 by ATP site-directed tetrabromo-2-benzotriazole. Protein Sci 10:2200–2206

    Article  PubMed  CAS  Google Scholar 

  • Bayliss R, Sardon T, Vernos I, Conti E (2003) Structural basis of aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12:851–862

    Article  PubMed  CAS  Google Scholar 

  • Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S, Kalisz HM, Flocco M (2003) Structural characterization of the GSK-3beta active site using selective and non-selective ATP-mimetic inhibitors. J Mol Biol 333:393–407

    Article  PubMed  CAS  Google Scholar 

  • Biondi RM, Cheung PCF, Casamayor A, Deak M, Currie RA, Alessi DR (2000) Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J 19:979–988

    Article  PubMed  CAS  Google Scholar 

  • Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR (2001) The PIF-binding pocket in PDK1 is essential for activation of S6 K and SGK, but not PKB. EMBO J 20:4380–4390

    Article  PubMed  CAS  Google Scholar 

  • Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, Alessi DR, van Aalten DMF (2002) High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J 21:4219–4228

    Article  PubMed  CAS  Google Scholar 

  • Bossemeyer D (1994) The glycine-rich sequence of protein kinases: a multifunctional element. Trends Biochem Sci 19:201–205

    Article  PubMed  CAS  Google Scholar 

  • Bossemeyer D, Engh RA, Kinzel V, Ponstingl H, Huber R (1993) Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein-kinase catalytic subunit from porcine heart as deduced from the 2.0 angstrom structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide Pki(5–24). EMBO J 12:849–859

    PubMed  CAS  Google Scholar 

  • Breitenlechner CB, Wegge T, Berillon L, Graul K, Marzenell K, Friebe W-G, Thomas U, Schumacher R, Huber R, Engh RA, Masjost B (2004) Structure-based optimization of novel azepane derivatives as PKB inhibitors. J Med Chem 47:1375–1390

    Article  PubMed  CAS  Google Scholar 

  • Breitenlechner CB, Gaßel M, Hidaka H, Kinzel V, Huber R, Engh RA, Bossemeyer D (2003) Protein Kinase A in complex with Rho kinase inhibitors Y-27632, fasudil (HA-1077) and H-1152P: structural basis of selectivity. Structure 11:1595–1607

    Article  PubMed  CAS  Google Scholar 

  • Chen HX, Marshall JL, Ness E, Martin RR, Dvorchik B, Rizvi N, Marquis J, McKinlay M, Dahut W, et al (2000) A safety and pharmacokinetic study of a mixed-backbone oligonucleotide (GEM231) targeting the type I protein kinase A by two-hour infusions in patients with refractory solid tumors. Clin Cancer Res 6:1259–1266

    PubMed  CAS  Google Scholar 

  • Cheng XD, Ma Y, Moore M, Hemmings BA, Taylor SS (1998) Phosphorylation and activation of cAMP-dependent protein kinase by phosphoinositide-dependent protein kinase. Proc Natl Acad Sci U S A 95:9849–9854

    PubMed  CAS  Google Scholar 

  • Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. BioChem J 351:95–105

    Article  PubMed  CAS  Google Scholar 

  • De Azevedo WF, Jr, Mueller-Dieckmann HJ, Schulze-Gahmen U, Worland PJ, Sausville E, Kim SH (1996) Structural basis for specificity and potency of a flavonoid inhibitor of human CDK2, a cell cycle kinase. Proc Natl Acad Sci U S A 93:2735–2740

    PubMed  Google Scholar 

  • De Moliner E, Brown NR, Johnson LN (2003) Alternative binding modes of an inhibitor to two different kinases. Eur J Biochem 270:3174–3181

    PubMed  Google Scholar 

  • Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, Messing RO (2000) Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol 279:L429–L438

    PubMed  CAS  Google Scholar 

  • Engh RA, Bossemeyer D (2001) The protein kinase activity modulation sites: mechanisms for cellular regulation—targets for therapeutic intervention. Adv Enzym Regul 41:121–149

    Article  CAS  Google Scholar 

  • Engh RA, Bossemeyer D (2002) Structural aspects of protein kinase control-role of conformational flexibility. Pharmacol Ther 93:99–111

    Article  PubMed  CAS  Google Scholar 

  • Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D (1996) Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity. J Biol Chem 271:26157–26164

    PubMed  CAS  Google Scholar 

  • Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A, Campochiaro P, Wood J, O’Reilly T, Meyer T (2000) PKC412-a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des 15:17–28

    PubMed  CAS  Google Scholar 

  • Fabbro D, Ruetz S, Buchdunger E, Cowan-Jacob SW, Fendrich G, Liebetanz J, Mestan J, O’Reilly T, Traxler P, Chaudhuri B, Fretz H, Zimmermann J, Meyer T, Caravatti G, Furet P, Manley PW (2002) Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol Ther 93:79–98

    Article  PubMed  CAS  Google Scholar 

  • Flynn P, Mellor H, Casamassima A, Parker PJ (2000) Rho GTPase control of protein kinase C-related protein kinase activation by 3-phosphoinositide-dependent protein kinase. J Biol Chem 275:11064–11070

    Article  PubMed  CAS  Google Scholar 

  • Fox T, Coll JT, Xie XL, Ford PJ, Germann UA, Porter MD, Pazhanisamy S, Fleming MA, Galullo V, Su MSS, Wilson KP (1998) A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase. Protein Sci 7:2249–2255

    Article  PubMed  CAS  Google Scholar 

  • Frank RN (2002) Potential new medical therapies for diabetic retinopathy: protein kinase C inhibitors. Am J Ophthalmol 133:693–698

    Article  PubMed  CAS  Google Scholar 

  • Frodin M, Jensen CJ, Merienne K, Gammeltoft S (2000) A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J 19:2924–2934

    Article  PubMed  CAS  Google Scholar 

  • Frodin M, Antal TL, Dummler BA, Jensen CJ, Deak M, Gammeltoft S, Biondi RM (2002) A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J 21:5396–5407

    Article  PubMed  Google Scholar 

  • Fukata Y, Amano M, Kaibuchi K (2001) Rho-Rho kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci 22:32–39

    Article  PubMed  CAS  Google Scholar 

  • Ganeshaguru K, Wickremasinghe RG, Jones DT, Gordon M, Hart SM, Virchis AE, Prentice HG, Hoffbrand AV, Man A, Champain K, Csermak K, Mehta AB (2002) Actions of the selective protein kinase C inhibitor PKC412 on B-chronic lymphocytic leukemia cells in vitro. Haematologica 87:167–176

    PubMed  CAS  Google Scholar 

  • Gao T, Toker A, Newton AC (2001) The carboxyl terminus of protein kinase C provides a switch to regulate its interaction with the phosphoinositide-dependent kinase, PDK-1. J Biol Chem 276:19588–19596

    PubMed  CAS  Google Scholar 

  • Gaßel M, Breitenlechner CB, König N, Huber R, Engh RA, Bossemeyer D (2004) The protein kinase C inhibitor bisindolyl-maleimide II binds with reversed orientations to different conformations of PKA. J Biol Chem (in press)

    Google Scholar 

  • Gaßel M, Breitenlechner CB, Ruger P, Jucknischke U, Schneider T, Huber R, Bossemeyer D, Engh RA (2003) Mutants of protein kinase A that mimic the ATP-binding site of protein kinase B (AKT). J Mol Biol 329:1021–1034

    PubMed  Google Scholar 

  • Gescher A (2000) Staurosporine analogues—pharmacological toys or useful antitumour agents? Crit Rev Oncol Hematol 34:127–135

    PubMed  CAS  Google Scholar 

  • Gibbs CS, Knighton DR, Sowadski JM, Taylor SS, Zoller MJ (1992) Systematic mutational analysis of cAMP-dependent protein kinase identifies unregulated catalytic subunits and defines regions important for the recognition of the regulatory subunit. J Biol Chem 267:4806–4814

    PubMed  CAS  Google Scholar 

  • Gustafsson AB, Brunton LL (1999) Differential and selective inhibition of protein kinase A and protein kinase C in intact cells by balanol congeners. Mol Pharmacol 56:377–82

    PubMed  CAS  Google Scholar 

  • Hall SE, Ballas LM, Kulanthaivel P, et al (1994) Preparation of balanoids as protein kinase C inhibitors. (Nichols:Gina M USA Sphinx Pharmaceuticals Corporation [9420062]):pp 1–559 WO9420062

    Google Scholar 

  • Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–62

    PubMed  CAS  Google Scholar 

  • Hofmann J (2001) Modulation of protein kinase C in antitumor treatment. Rev Physiol Biochem Pharmacol 142:1–96

    PubMed  CAS  Google Scholar 

  • Hu H, Jagdmann EG Jr, Mendoza JS (1995) Preparation of substituted fused and bridged bicyclic compound protein kinase C inhibitors. (Lilly:Eli Co USA [9530640]:pp 1–84 1995 WO9530640

    Google Scholar 

  • Hubbard SR (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 16:5572–5581

    Article  PubMed  CAS  Google Scholar 

  • Hunenberger PH, Helms V, Narayana N, Taylor SS, McCammon JA (1999) Determinants of ligand binding to cAMP-dependent protein kinase. Biochemistry 38:2358–2366

    Article  PubMed  CAS  Google Scholar 

  • Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275–282

    Article  PubMed  CAS  Google Scholar 

  • Ikenoya M, Hidaka H, Hosoya T, Suzuki M, Yamamoto N, Sasaki Y (2002) Inhibition of Rho kinase-induced myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation in human neuronal cells by H-1152, a novel and specific Rho kinase inhibitor. J Neurochem 81:9–16

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Kishimoto A, Takai Y, Nishizuka Y (1977) Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem 252:7610–7616

    PubMed  CAS  Google Scholar 

  • Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of Rho-associated kinases. Mol Pharmacol 57:976–983

    PubMed  CAS  Google Scholar 

  • Itoh K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S (1999) An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med 5:221–225

    Article  PubMed  CAS  Google Scholar 

  • Jagdmann GE, Defauw JM, Lampe JW, Darges JW, Kalter K (1996) Potent and selective PKC inhibitory 5-membered ring analogs of balanol with replacement of the carboxamide moiety. Bioorg Med Chem Lett 6:1759–1764

    Article  CAS  Google Scholar 

  • Jensen CJ, Buch MB, Krag TO, Hemmings BA, Gammeltoft S, Frodin M (1999) 90-kDa ribosomal S6 kinase is phosphorylated and activated by 3-phosphoinositide-dependent protein kinase-1. J Biol Chem 274:27168–27176

    PubMed  CAS  Google Scholar 

  • Jirousek MR, Gillig JR, Gonzalez CM, Heath WF, McDonald JH, III Neel DA, Rito CJ, Singh U, Stramm LE, Melikian-Badalian A, Baevsky M, Ballas LM, Hall SE, Winneroski LL, Faul MM (1996) (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16,21-dimetheno-1H, 13H-dibenzo[e,k]pyrrolo[3,4-h][1,4,13]oxadiazacyclohexadecene-1,3(2H)-d ione (LY333531) and related analogues: isozyme selective inhibitors of protein kinase C beta. J Med Chem 39:2664–2671

    Article  PubMed  CAS  Google Scholar 

  • Johnson DA, Li F, Gangal M, Juliano C, Gorfain E, Taylor SS (2002a) Domain closure, segmental flexibility, and the catalytic cycle of A-kinase. Biophys J 82:1624

    Google Scholar 

  • Johnson LN, De Moliner E, Brown NR, Song H, Barford D, Endicott JA, Noble MEM (2002b) Structural studies with inhibitors of the cell cycle regulatory kinase cyclindependent protein kinase 2. Pharmacol Ther 93:113–124

    Article  PubMed  CAS  Google Scholar 

  • Karlsson R, Zheng JH, Xuong NH, Taylor SS, Sowadski JM (1993) Structure of the mammalian catalytic subunit of cAMP-dependent protein-kinase and an inhibitor peptide displays an open conformation. Acta Crystallogr D Biol Crystallogr 49:381–388

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Hwang JH, Suh JM, Kim H, Song JH, Hwang ES, Hwang IY, Park KC, Chung HK, Kim JM, Park J, Hemmings BA, Shong M (2003) RET/PTC (rearranged in transformation/papillary thyroid carcinomas) tyrosine kinase phosphorylates and activates phosphoinositide-dependent kinase 1 (PDK1): an alternative phosphatidylinositol 3-kinase-independent pathway to activate PDK1. Mol Endocrinol 17:1382–1394

    PubMed  CAS  Google Scholar 

  • Kinzel V, Kubler D (1976) Single step purification of the catalytic subunit(s) of cyclic 3′,5′-adenosine monophosphate-dependent protein kinase(s) from rat muscle. Biochem Biophys Res Commun 71:257–264

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto A, Takai Y, Nishizuka Y (1977) Activation of glycogen phosphorylase kinase by a calcium-activated, cyclic nucleotide-independent protein kinase system. J Biol Chem 252:7449–7452

    PubMed  CAS  Google Scholar 

  • Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphatedependent protein kinase [see comments]. Science 253:407–414

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Cohen P (1999) Activation of serum-and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J 339:319–328

    Article  PubMed  CAS  Google Scholar 

  • Koide K, Bunnage ME, Gomez Paloma L, Kanter JR, Taylor SS, Brunton LL, Nicolaou KC (1995) Molecular design and biological activity of potent and selective protein kinase inhibitors related to balanol. Chem Biol 2:601–8

    Article  PubMed  CAS  Google Scholar 

  • Komander D, Kular GS, Bain J, Elliott M, Alessi DR, van Aalten DMF (2003) Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. BioChem J 375:255–262

    Article  PubMed  CAS  Google Scholar 

  • Komander D, Kular GS, Schttelkopf AW, Deak M, Prakash KRC, Bain J, Elliott M, Garrido-’Franko M, Kozikowski AP, Alessi DR, van Aalten DMF (2004) Interactions of LY333531 and other bisindolyl maleimide inhibitors with PDK1. Structure 12:215–226

    Article  PubMed  CAS  Google Scholar 

  • Kubler D, Gagelmann M, Pyerin W, Kinzel V (1979) Isolation of the catalytic subunits of cyclic AMP-dependent protein kinases from different mammalian tissues on the basis of charge differences of their subunits. Hoppe Seylers Z Physiol Chem 360:1421–1431

    PubMed  CAS  Google Scholar 

  • Kulanthaivel P, Hallock Y, Boros C, Hamilton SM, Janzen WP, Ballas LM, Loomis CR, Jiang JB, Katz JB, Steiner JR, Clardy J (1993) Balanol: a novel and potent inhibitor of protein kinase C from the fungus Verticillium balanoides. J Am Chem Soc 115:6452–6453

    CAS  Google Scholar 

  • Lamers MB, Antson AA, Hubbard RE, Scott RK, Williams DH (1999) Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine. J Mol Biol 285:713–725

    Article  PubMed  CAS  Google Scholar 

  • Lampe JW, Biggers CK, Defauw JM, Foglesong RJ, Hall SE, Heerding JM, Hollinshead SP, Hu H, Hughes PF, Jagdmann GE, Jr, Johnson MG, Lai YS, Lowden CT, Lynch MP, Mendoza JS, Murphy MM, Wilson JW, Ballas LM, Carter K, Darges JW, Davis JE, Hubbard FR, Stamper ML (2002) Synthesis and protein kinase inhibitory activity of balanol analogues with modified benzophenone subunits. J Med Chem 45:2624–43

    Article  PubMed  CAS  Google Scholar 

  • Lawrie AM, Noble ME, Tunnah P, Brown NR, Johnson LN, Endicott JA (1997) Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2 [letter]. Nat Struct Biol 4:796–801

    Article  PubMed  CAS  Google Scholar 

  • Le Good JA, Ziegler WH, Parekh DB, Alessi DR, Cohen P, Parker PJ (1998) Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281:2042–2045

    PubMed  Google Scholar 

  • Leung T, Manser E, Tan L, Lim L (1995) A novel serine/threonine kinase binding the Rasrelated RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem 270:29051–29054

    PubMed  CAS  Google Scholar 

  • Lodowski DT, Pitcher JA, Capel WD, Lefkowitz RJ, Tesmer JJG (2003) Keeping G proteins at bay: a complex between G protein-coupled receptor kinase 2 and Gbetagamma. Science 300:1256–1262

    Article  PubMed  CAS  Google Scholar 

  • Madhusudan Akamine P, Xuong NH, Taylor SS (2002) Crystal structure of a transition state mimic of the catalytic subunit of cAMP-dependent protein kinase. Nat Struct Biol 9:273–277

    Article  PubMed  CAS  Google Scholar 

  • Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  PubMed  CAS  Google Scholar 

  • Marambaud P, Ancolio K, Alves da Costa C, Checler F (1999) Effect of protein kinase A inhibitors on the production of Abeta40 and Abeta42 by human cells expressing normal and Alzheimer’s disease-linked mutated betaAPP and presenilin 1. Br J Pharmacol 126:1186–1190

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Rho-associated kinase, a novel serine threonine kinase, as a putative target for the small GTP binding protein Rho. EMBO J 15:2208–2216

    PubMed  CAS  Google Scholar 

  • Meggio F, Donella DA, Ruzzene M, et al (1995) Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur J Biochem 234:317–322

    Article  PubMed  CAS  Google Scholar 

  • Montminy M (1997) Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807–822

    Article  PubMed  CAS  Google Scholar 

  • Nakashima S (2002) Protein kinase C alpha (PKC alpha): regulation and biological function. J Biochem (Tokyo) 132:669–675

    PubMed  CAS  Google Scholar 

  • Narayana N, Diller TC, Koide K, Bunnage ME, Nicolaou KC, Brunton LL, Xuong NH, Ten Eyck LF, Taylor SS (1999) Crystal structure of the potent natural product inhibitor balanol in complex with the catalytic subunit of cAMP-dependent protein kinase. Biochemistry 38:2367–2376

    Article  PubMed  CAS  Google Scholar 

  • Narumiya S, Ishizaki T, Uehata M (2000) Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol 325:273–284

    PubMed  CAS  Google Scholar 

  • Nelson NC, Taylor SS (1981) Differential labeling and identification of the cysteine-containing tryptic peptides of catalytic subunit from porcine heart cAMP-dependent protein kinase. J Biol Chem 256:3743–3750

    PubMed  CAS  Google Scholar 

  • Newton AC (2001) Protein kinase C: structural and spatial regulation by phosphorylation, cofactors, and macromolecular interactions. Chem Rev 101:2353–2364

    Article  PubMed  CAS  Google Scholar 

  • Newton AC (2003) Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. BioChem J 370:361–371

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1984) The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308:693–698

    Article  PubMed  CAS  Google Scholar 

  • Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9:484–496

    PubMed  CAS  Google Scholar 

  • Nolen B, Ngo J, Chakrabarti S, Vu D, Adams JA, Ghosh G (2003) Nucleotide-induced conformational changes in the Saccharomyces cerevisiae SR protein kinase, Sky1p, revealed by X-ray crystallography. Biochemistry 42:9575–9585

    Article  PubMed  CAS  Google Scholar 

  • Ohshima S, Yanagisawa M, Katoh A, Fujii T, Sano T, Matsukuma S, Furumai T, Fujiu M, Watanabe K, Yokose K, et al (1994) Fusarium merismoides Corda NR 6356, the source of the protein kinase C inhibitor, azepinostatin. Taxonomy, yield improvement, fermentation and biological activity. J Antibiot (Tokyo) 47:639–47

    PubMed  CAS  Google Scholar 

  • Olah GA, Mitchell RD, Sosnick TR, Walsh DA, Trewhella J (1993) Solution structure of the cAMP-dependent protein kinase catalytic subunit and its contraction upon binding the protein kinase inhibitor peptide. Biochemistry 32:3649–3657

    Article  PubMed  CAS  Google Scholar 

  • Ono-Saito N, Niki I, Hidaka H (1999) H-series protein kinase inhibitors and potential clinical applications. Pharmacol Ther 82:123–131

    Article  PubMed  CAS  Google Scholar 

  • Orellana SA, Amieux PS, Zhao X, McKnight GS (1993) Mutations in the catalytic subunit of the cAMP-dependent protein kinase interfere with holoenzyme formation without disrupting inhibition by protein kinase inhibitor. J Biol Chem 268:6843–6846

    PubMed  CAS  Google Scholar 

  • Pargellis C, Tong L, Churchill L, Cirillo PF, et al (2002) Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Biol 9:268–272

    Article  PubMed  CAS  Google Scholar 

  • Park J, Hill MM, Hess D, Brazil DP, Hofsteenge J, Hemmings BA (2001) Identification of tyrosine phosphorylation sites on 3-phosphoinositide-dependent protein kinase-1 and their role in regulating kinase activity. J Biol Chem 276:37459–37471

    PubMed  CAS  Google Scholar 

  • Pettit GR, Day JF, Hartwell JL, Wood HB (1970) Antineoplastic components of marine animals. Nature 227:962–963

    Article  PubMed  CAS  Google Scholar 

  • Prade L, Engh RA, Girod A, Kinzel V, Huber R, Bossemeyer D (1997) Staurosporine-induced conformational changes of cAMP-dependent protein kinase catalytic subunit explain inhibitory potential. Structure 5:1627–1637

    PubMed  CAS  Google Scholar 

  • Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G (1998) Phosphorylation and activation of p70s6 k by PDK1. Science 279:707–710

    Article  PubMed  CAS  Google Scholar 

  • Richards SA, Fu J, Romanelli A, Shimamura A, Blenis J (1999) Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Curr Biol 9:810–820

    Article  PubMed  CAS  Google Scholar 

  • Russo AA, Jeffrey PD, Pavletich NP (1996) Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat Struct Biol 3:696–700

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Suzuki M, Hidaka H (2002) The novel and specific Rho kinase inhibitor (S)-(+)-2-methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho kinase-involved pathway. Pharmacol Ther 93:225–232

    Article  PubMed  CAS  Google Scholar 

  • Schneider T (2002) Kinetische und strukturelle Untersuchungen zur Funktion ausgew hlter konservierter Aminosurereste der katalytischen Untereinheit Ca der Proteinkinase A. Universitt Bielefeld

    Google Scholar 

  • Schulze Gahmen U, Brandsen J, Jones HD, Morgan DO, Meijer L, Vesely J, Kim SH (1995) Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins 22:378–391

    Google Scholar 

  • Setyawan J, Koide K, Diller TC, Bunnage ME, Taylor SS, Nicolaou KC, Brunton LL (1999) Inhibition of protein kinases by balanol: Specificity within the serine/threonine protein kinase subfamily. Mol Pharmacol 56:370–376

    PubMed  CAS  Google Scholar 

  • Shimokawa H, Iinuma H, Kishida H, Nakashima M, Kato K (2001) Antianginal effect of fasudil, a Rho kinase inhibitor, in patients with stable effort angina: a multicenter study. Circulation 104:2843

    Google Scholar 

  • Sicheri F, Moarefi I, Kuriyan J (1997) Crystal structure of the Src family tyrosine kinase Hck [see comments]. Nature 385:602–609

    Article  PubMed  CAS  Google Scholar 

  • Sinnett-Smith J, Lunn JA, Leopoldt D, Rozengurt E (2001) Y-27632, an inhibitor of Rhoassociated kinases, prevents tyrosine phosphorylation of focal adhesion kinase and paxillin induced by bombesin: dissociation from tyrosine phosphorylation of p130(CAS). Exp Cell Res 266:292–302

    Article  PubMed  CAS  Google Scholar 

  • Sprang SR, Acharya KR, Goldsmith EJ, Stuart DI, Varvill K, Fletterick RJ, Madsen NB, Johnson LN (1988) Structural changes in glycogen phosphorylase induced by phosphorylation. Nature 336:215–221

    Article  PubMed  CAS  Google Scholar 

  • Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF, Holmes AB, McCormick F, Hawkins PT (1997) Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277:567–570

    Article  PubMed  CAS  Google Scholar 

  • Swannie HC, Kaye SB (2002) Protein kinase C inhibitors. Curr Oncol Rep 4:37–46

    PubMed  Google Scholar 

  • Takemoto M, Sun JX, Hiroki J, Shimokawa H, Liao JK (2002) Rho kinase mediates hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation 106:57–62

    Article  PubMed  CAS  Google Scholar 

  • Tamm I, Dorken B, Hartmann G (2001) Antisense therapy in oncology: new hope for an old idea? Lancet 358:489–497

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Ohshima N, Takagi M, Komeima K, Hidaka H (1998) Novel vascular relaxant, Hmn-1152—its molecular mechanism of action. Naunyn Schmiedebergs Arch Pharmakol 358:P3740

    Google Scholar 

  • Taniyama Y, Weber DS, Rocic P, Hilenski L, Akers ML, Park J, Hemmings BA, Alexander RW, Griendling KK (2003) Pyk2-dependent tyrosine phosphorylation of PDK1 mediates cell spreading. FASEB J 17:A1351

    Google Scholar 

  • Toledo LM, Lydon NB (1997) Structures of staurosporine bound to CDK2 and cAPK-new tools for structure-based design of protein kinase inhibitors. Structure 5:1551–1556

    Article  PubMed  CAS  Google Scholar 

  • Trauger JW, Lin FF, Turner MS, Stephens J, LoGrasso PV (2002) Kinetic mechanism for human Rho-kinase II (ROCK-II). Biochemistry 41:8948–8953

    PubMed  CAS  Google Scholar 

  • Traxler P (2003) Tyrosine kinases as targets in cancer therapy-successes and failures. Expert Opin Ther Targets 7:215–234

    Article  PubMed  CAS  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994

    Article  PubMed  CAS  Google Scholar 

  • Underwood KW, Parris KD, Federico E, et al (2003) Catalytically active MAP KAP kinase 2 structures in complex with staurosporine and ADP reveal differences with the autoinhibited enzyme. Structure 11:627–636

    Article  PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Alessi DR (2000) The P13K-PDK1 connection: more than just a road to PKB. BioChem J 346:561–576

    Article  PubMed  CAS  Google Scholar 

  • Walsh DA, Perkins JP, Krebs EG (1968) An adenosine 3’,5’-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 243:3763–3765

    PubMed  CAS  Google Scholar 

  • Way KJ, Chou E, King GL (2000) Identification of PKC-isoform-specific biological actions using pharmacological approaches. Trends Pharmacol Sci 21:181–187

    Article  PubMed  CAS  Google Scholar 

  • Wick MJ, Wick KR, Chen H, He H, Dong LQ, Quon MJ, Liu F (2002) Substitution of the autophosphorylation site Thr516 with a negatively charged residue confers constitutive activity to mouse 3-phosphoinositide-dependent protein kinase-1 in cells. J Biol Chem 277:16632–16638

    Article  PubMed  CAS  Google Scholar 

  • Wong CF, Hunenberger PH, Akamine P, Narayana N, Diller T, McCammon JA, Taylor S, Xuong NH (2001) Computational analysis of PKA-balanol interactions. J Med Chem 44:1530–1539

    Article  PubMed  CAS  Google Scholar 

  • Xu R-M, Carmel G, Kuret J, Cheng X (1996) Structural basis for selectivity of the isoquinoline sulfonamide family of protein kinase inhibitors. Proc Natl Acad Sci U S A 93:6308–6313

    PubMed  CAS  Google Scholar 

  • Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D (2002) Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol 9:940–944

    Article  PubMed  CAS  Google Scholar 

  • Zhao B, Bower MJ, McDevitt PJ, Zhao HZ, Davis ST, Johanson KO, Green SM, Concha NO, Zhou BBS (2002) Structural basis for Chk1 inhibition by UCN-01. J Biol Chem 277:46609–46615

    PubMed  CAS  Google Scholar 

  • Zheng J, Knighton DR, Ten Eyck LF, Karlsson R, Xuong N, Taylor SS, Sowadski JM (1993) Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 32:2154–2161

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Kim JL, Newcomb JR, Rose PE, Stover DR, Toledo LM, Zhao H, Morgenstern KA (1999) Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure Fold Des 7:651–661

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Gaßel, M., Breitenlechner, C., Herrero, S., Engh, R., Bossemeyer, D. (2005). Inhibitors of PKA and Related Protein Kinases. In: Pinna, L.A., Cohen, P.T. (eds) Inhibitors of Protein Kinases and Protein Phosphates. Handbook of Experimental Pharmacology, vol 167. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26670-4_5

Download citation

Publish with us

Policies and ethics