Skip to main content

Part of the book series: Signals and Communication Technology ((SCT))

  • 1564 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11 References

  • Barbot JP, Levy AJ, Bic JC (1992) Estimation of fast fading distribution functions. Com. URSI Commission F Open Symposium

    Google Scholar 

  • Bic JC, Charbonnier A, Duponteil D, Ruelle D, Tabbane S, Taisant JP (1995) Radiocommunications et mobilité. Annales des Télécommunications, 50,1: 114–141

    Google Scholar 

  • Berg JE (1995) A recursive method for street microcell path loss calculations. PIMRC'95, Toronto, Canada, pp 140–143

    Google Scholar 

  • Bertoni HL, Honcharenko W, Maciel LR, Xia HH (1994) UHF propagation prediction for wireless personal communications. Proceedings of the IEEE, vol 82,9: 1333–1359

    Article  Google Scholar 

  • Boithias L (1987) Radio Wave Propagation. MacGraw-Hill, New York

    Google Scholar 

  • Bourdeilles (1997) Modélisation de la propagation radio pour l'ingénierie radio des systèmes de communications avec les mobiles. SEE: Propagation électromagnétique dans l'atmosphère du décamétrique à l'angström, pp 115–120

    Google Scholar 

  • Braun WR, Dersch U (1991) A physical mobile radio channel. IEEE Transactions on Vehicular Technology vol 40,2: 472–482.

    Article  Google Scholar 

  • Chaigneaud L, Guillet V, Vauzelle R (2001a) 3D ray tracing method for indoor propagation modelling at 60 GHz. European Conference on Wireless Technology, London

    Google Scholar 

  • Chaigneaud L, Guillet V, Vauzelle R (2001b) A 3D ray tool broadband wireless system. Vehicular Technology Conference, Atlantic City

    Google Scholar 

  • Chaigneaud L, Guillet V, Vauzelle R (2002) Méthode de tracé de rayon 3D pour la modélisation de la propagation en intérieur à 60 GHz. Propagation électromagnétique dans l'atmosphère du décamétrique à l'angström, Rennes

    Google Scholar 

  • Cichon DJ, Wiesbeck W (1994) Indoor and outdoor propagation modelling in pico cells. PIMRC'94, Personal Indoor Mobile Radio Communications

    Google Scholar 

  • Clarke RH (1968) A statistical theory of mobile-radio reception. BSTJ: 957–1000

    Google Scholar 

  • CNET/CSELT Cooperation (1998) Data transmission on DECT standard. Definition of common propagation models, regeneration scheme and performance evaluation criteria for the aligment of the two radio link simulators

    Google Scholar 

  • COST 259 (2000) COST 259 Web informations: www.lx.it.pt/cost259

    Google Scholar 

  • COST 231 (1999) Evolution of land mobile radio (including personal) communications. Final report, Information, Technologies and Sciences, European Commission

    Google Scholar 

  • Crochiere RE, Rabiner LR (1981) Interpolation and decimation of digital signals-a tutoral review. Proceedings of the IEEE vol 69,3: 300–331

    Google Scholar 

  • Failly M (1989) Final Report of COST 207, Digital Land Mobile Radio Communications. CEE Luxemburg

    Google Scholar 

  • Foulonneau B, Gaudaire F, Gabillet Y (1996) Measurement method of electromagnetic transmission loss of building components using two reverberation chambers. Elect. Letters 7 vol 32,23: 2130–2131

    Article  Google Scholar 

  • Gahleitner R, Bonek E (1994) Radio waves penetration into urban buildings in small cell and microcells. Technische Universität Wien, Vienna, Austria, Proceedings Vehicular Technology Conference, Stockholm, pp 887–891

    Google Scholar 

  • Gfeller FR, Bapst URS (1979) Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE vol 67,11

    Google Scholar 

  • Hashemi H (1993) The Indoor Radio Propagation Channel. Proceedings of the IEEE vol 81,7: 943–968

    Article  Google Scholar 

  • Hata M (1980) Empirical formula for propagation loss in land mobile radio service. IEEE Transactions on Vehicular Technology vol 29: 317–325

    Google Scholar 

  • Ikekami F, Yoshida S, Takeuchi T, Umehira M (1984) Propagation factors controlling mean field strength on urban streets. IEEE Transactions on Antennas and Propagation vol 32,8: 822–829

    Article  Google Scholar 

  • ITU-R (1996) International Telecommunication Union Study Groups ‘Guidelines for evaluation of radio transmission technologies for IMT-2000/FPLMTS'. FPLMTS.REVAL Question ITU-R Document 8/29-E

    Google Scholar 

  • Jakoby R, Liebenow U (1995) Modelling of radiowave propagation in microcells. Proc. Intern. Conference on Antennas and Propagation. ICAP, Eindhoven, the Netherlands, pp 377–380

    Google Scholar 

  • Jenvey S (1994) Ray optics modelling for indoor propagation at 1.8 GHz. Proceedings of the IEEE 44th Vehicular Technology Conference, Stockholm, Sweden

    Google Scholar 

  • Kattenbach R, Fruchting H (1995) Calculation of system and correlation functions for WSSUS channels from wideband measurements. Frequenz 493–4: 42–47

    Google Scholar 

  • Keenan JM, Motley AJ (1990) Radio Coverage in Buildings. British Telecom Technol. J. vol 8,1

    Google Scholar 

  • Keller JB (1962) Geometrical theory of diffraction. JOSA vol 52: 116–130

    Google Scholar 

  • Kouyoumjian RG, Pathak PH (1974) A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface. Proc IEEE vol 62,11: 1448–1461

    Google Scholar 

  • Kurner T, Cichon DJ, Wiesbeck W (1993) Concepts and Results for 3D Digital Terrain Based Wave Propagation Models: an overview. IEEE Trans. Selected Areas in Com., vol SAC 11,7: 1002–1012

    Article  Google Scholar 

  • Lagrange X (2000) Les réseaux mobiles. Chapitre 2: Propagation radioélectrique. In: Sizun H, Bic JC (eds) Réseaux et Télécoms, Information-Commande-Communication, Hermès, Paris

    Google Scholar 

  • Laspougeas R, Pajusco P, Bic JC (2000) Radio propagation in urban small cells environment at 2 GHz: Experimental spatio-temporal characterization and spatial wideband channel model. Proc. IEEE Vehicular Technology Conference VTC'2000, Boston

    Google Scholar 

  • Lauer A, Bahr A, Wolff I (1994) FDTD simulations of indoor propagation. Proceedings of the 44th Vehicular Technology Conference, Stockholm, Sweden

    Google Scholar 

  • Laurenson DI, McLaughlin S, Sheikh AUH (1993) The application of ray tracing and the GTD to indoor channel modelling. IEEE Conf. GLOBECOM'93, Houston, USA

    Google Scholar 

  • Lavergnat J, Sylvain M (1997) Propagation des ondes radioélectriques. Collection Pédagogique de Télécommunication, Masson, Paris

    Google Scholar 

  • Lawton MC, McGeehan JP (1994) The application of a deterministic ray launching for the prediction of radiochannel characteristics in small cell environment. IEEE Transactions on Vehicular Technology, vol 43,4: 955–969

    Article  Google Scholar 

  • Liang G, Bertoni HL (1998) A new approach to 3D ray tracing for propagation prediction in cities. IEEE Transactions on Antennas and Propagation vol 46,6

    Google Scholar 

  • Lu YE (1993) Site precise radio wave propagation simulations by time domain finite difference methods. Proceedings of the 43th Vehicular Technology Conference, Meadowlands, USA

    Google Scholar 

  • McKown JW, Hamilton RL (1991) Ray tracing as a design tool for radio networks. IEEE Network Magazine

    Google Scholar 

  • McNamara DA, Pistorius CWI, Malherbe JAG (1990) The Uniform Geometrical Theory of Diffraction. Artech House, London

    Google Scholar 

  • METAMORP Project (2000) Description of the modeling method. Deliverable C2/1 www.nt.tuwien.ac.at/mobile/projects/METAMORP/en/

    Google Scholar 

  • Motley AJ, Keenan JM (1988) Personnal communication radio coverage in building at 900 MHz and 1700 MHz. Electronics Letters vol 24,12

    Google Scholar 

  • Murch RD, Cheung KW, Fong MS, Sau JHM, Chuang JCL A new approach to indoor propagation prediction. Proceedings of the 44th Vehicular Technology Conference, Stockholm, Sweden

    Google Scholar 

  • Parsons JD (1992) The mobile radio propagation channel. Pentech Press Publishers

    Google Scholar 

  • RACE ATDMA Project (1994) Channel models Issue 2. R084/ESG/CC3/DS/029/b1 Gollreiter R (ed)

    Google Scholar 

  • Rappaport TS, Sandhu S (1994) Radio Wave Propagation for Emerging Wireless Personal Communication Systems. IEEE Antennas and Propagation Magazine vol 36,5:14–23

    Article  Google Scholar 

  • Rossi JP, Barbot JP, Levy AJ (1997) Theory and measurement of the angle of arrival and time delay of UHF radiowaves using a ring array. IEEE Transactions on Antennas and Propagation vol 45,5: 876–884

    Article  Google Scholar 

  • Rossi JP, Bic JC, Levy AJ, Gabillet Y, Rosen M (1991) A ray launching method for radiomobile propagation in urban area. IEEE Antennas and Propagation Symposium, London, Ontario, vol 3: 1540–1543

    Google Scholar 

  • Rossi JP, Levy AJ (1992) A ray model for decimetric radio-wave propagation in an urban area. Radio Science vol 27,6: 971–979

    Google Scholar 

  • Saunders SR (1999) Antennas and Propagation for wireless communications systems. Wiley, London

    Google Scholar 

  • Siaud I (1996) A digital signal processing approach for the mobile radio propagation channel simulation with time and frequency diversity applied to an indoor environment at 2.2 GHz. Personal indoor mobile radio communications conference, PIMRC'96, Taiwan

    Google Scholar 

  • Siaud I (1997a) A mobile propagation channel model with frequency hopping based on a digita signal processing and statistical analysis of wideband measurements applied in micro and small cells at 2.2 GHz. IEEE Vehicular technology Conference, Phoenix, Arizona vol 2, pp 1084–1088

    Google Scholar 

  • Siaud I (1997b) Simulation du canal de propagation radiomobile en environnement urbain pour l'étude des performances des systèmes de communication de 3iéme génération avec diversité de fréquence. 3ièmes journées d'étude “Propagation électromagnétique dans l'atmosphère du décamétrique à l'angström' pp 277–282

    Google Scholar 

  • Seidel SY, Rappaport TS (1994) Site-specific propagation prediction for wireless in building personal communication system design. IEEE Transactions on Vehicular Technology vol 43,4

    Google Scholar 

  • Valenzuela RA (1994) Ray tracing prediction of indoor radio propagation. PIMRC'94, Personal Indoor Mobile Radio Communications

    Google Scholar 

  • Valenzuela R, Landron O, Jacobs DL (1997) Estimating Local Mean Signal Strength of Indoor Multipath Propagation. IEEE Transactions on Vehicular Technology vol 46,1: 203–121

    Article  Google Scholar 

  • Walfish J, Bertoni HL (1988) A theoretical model of UHF propagation in urban environments. IEEE Antennas and Propagation vol 36,12: 1788–1796

    Article  Google Scholar 

  • Walker EH (1993) Penetration of Radio Signals into Buildings in the Cellular Radio Environment. The Bell System Technical Journal vol 62,9: 2719–2730

    Google Scholar 

  • Wiart J, Marquis A, Juy M (1993) Analytical Microcell Path Loss Model at 2.2 GHz. PIMRC'93, Yokohama

    Google Scholar 

  • Xia HH, Bertoni HL (1993) Radio propagation characteristics for line-of-sight microcellular and personal communications. IEEE Antennas and Propagation vol 41,10

    Google Scholar 

  • Yang H, Lu C (2000) Infrared wireless LAN using multiple optical sources. IEE Proc OptoElectron vol 147,4

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Mobile Radio Links. In: Radio Wave Propagation for Telecommunication Applications. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26668-2_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-26668-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40758-4

  • Online ISBN: 978-3-540-26668-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics