Skip to main content

Immunology and Immunotherapy

  • Chapter
Neuroblastoma

Part of the book series: Pediatric Oncology ((PEDIATRICO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agus DB, Akita RW, Fox WD et al. (2002) Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell 2:127–137

    Article  PubMed  Google Scholar 

  • Allen TM, Sapra P, Moase E et al. (2002) Adventures in targeting. J Liposome Res 12:5–12

    Article  PubMed  Google Scholar 

  • Amstutz H, Rytz C, Novak-Hofer I et al. (1993) Production and characterization of a mouse/human chimeric antibody directed against human neuroblastoma. Int J Cancer 53:147–152

    PubMed  Google Scholar 

  • Barker E, Reisfeld RA (1993) A mechanism for neutrophil-mediated lysis of human neuroblastoma cells. Cancer Res 53:362–367

    PubMed  Google Scholar 

  • Batova A, Kamps A, Gillies SD et al. (1999) The ch14.18-GM-CSF fusion protein is effective at mediating antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity in vitro. Clin Cancer Res 5:4259–4263

    PubMed  Google Scholar 

  • Batova A, Strother D, Castleberry RP et al. (2002) Immune response to an anti-idiotype monoclonal antibody 1A7 as a tumor vaccine in children with high risk neuroblastoma. Proc Am Assoc Cancer Res 43:143

    Google Scholar 

  • Bauer M, Reaman GH, Hank JA et al. (1995) A phase II trial of human recombinant interleukin-2 administered as a 4-day continuous infusion for children with refractory neuroblastoma, non-Hodgkin's lymphoma, sarcoma, renal cell carcinoma, and malignant melanoma. A Childrens Cancer Group study. Cancer 75:2959–2965

    PubMed  Google Scholar 

  • Bauer S, Renner C, Juwana JP et al. (1999) Immunotherapy of human tumors with T-cell-activating bispecific antibodies: stimulation of cytotoxic pathways in vivo. Cancer Res 59:1961–1965

    PubMed  Google Scholar 

  • Berthold F, Schumacher R, Schneider A et al. (1989) Removal of neuroblastoma cells from bone marrow by a direct monoclonal antibody rosetting technique. Bone Marrow Transplant 4:273–278

    PubMed  Google Scholar 

  • Boerman OC, van Schaijk FG, Oyen WJ et al. (2003) Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med 44:400–411

    PubMed  Google Scholar 

  • Bonig H, Laws HJ, Wundes A et al. (2000) In vivo cytokine responses to interleukin-2 immunotherapy after autologous stem cell transplantation in children with solid tumors. Bone Marrow Transplant 26:91–96

    Article  PubMed  Google Scholar 

  • Bowman L, Grossmann M, Rill D et al. (1998) IL-2 adenovector-transduced autologous tumor cells induce antitumor immune responses in patients with neuroblastoma. Blood 92:1941–1949

    PubMed  Google Scholar 

  • Brenner MK, Heslop H, Krance R et al. (2000) Phase I study of chemokine and cytokine gene-modified autologous neuroblastoma cells treatment of relapsed/refractory neuroblastoma using an adenoviral vector. Hum Gene Ther 11:1477

    Article  PubMed  Google Scholar 

  • Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345

    Article  PubMed  Google Scholar 

  • Carrel F, Amstutz H, Novak-Hofer I et al. (1997) Evaluation of radioiodinated and radiocopper labeled monovalent fragments of monoclonal antibody chCE7 for targeting of neuroblastoma. Nucl Med Biol 24:539–546

    Article  PubMed  Google Scholar 

  • Carter P (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118–129

    Article  PubMed  Google Scholar 

  • Cartron G, Dacheux L, Salles G et al. (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 99:754–758

    Article  PubMed  Google Scholar 

  • Chari RV, Jackel KA, Bourret LA et al. (1995) Enhancement of the selectivity and antitumor efficacy of a CC-1065 analogue through immunoconjugate formation. Cancer Res 55:4079–4084

    PubMed  Google Scholar 

  • Chen S, Caragine T, Cheung NK et al. (2000a) Surface antigen expression and complement susceptibility of differentiated neuroblastoma clones. Am J Pathol 156:1085–1091

    PubMed  Google Scholar 

  • Chen S, Caragine T, Cheung NKV et al. (2000b) CD59 expressed on a tumor cell surface modulates decay-accelarating factor expression and enhanses tumor growth in a rat model of human neuroblastoma. Cancer Res 60:3013–3018

    PubMed  Google Scholar 

  • Cheung IY, Cheung NKV (1997) Molecular detection of GAGE expression in peripheral blood and bone marrow: utility as a tumor marker for neuroblastoma. Clin Cancer Res 3:821–826

    PubMed  Google Scholar 

  • Cheung IY, Barber D, Cheung NK (1998) Detection of microscopic neuroblastoma in marrow by histology, immunocytology, and reverse transcription-PCR of multiple molecular markers. Clin Cancer Res 4:2801–2805

    PubMed  Google Scholar 

  • Cheung IY, Lo Piccolo MS, Kushner BH et al. (2003a) Early molecular response in marrow is highly prognostic following treatment with anti-GD2 and GM-CSF. J Clin Oncol 21:3853–3858

    Article  PubMed  Google Scholar 

  • Cheung IY, Lo Piccolo MS, Kushner BH et al. (2003b) Quantitation of GD2 synthase mRNA by real-time reverse transcriptase polymerase chain reaction: clinical utility in evaluating adjuvant therapy in neuroblastoma. J Clin Oncol 21:1087–1093

    Article  PubMed  Google Scholar 

  • Cheung N, Landmeier B, Neely J et al. (1986) Complete tumor ablation with iodine 131-radiolabeled disialoganglioside GD2-specific monoclonal antibody against human neuroblastoma xenografted in nude mice. J Natl Cancer Inst 77:739–745

    PubMed  Google Scholar 

  • Cheung N, Lazarus H, Miraldi FD et al. (1987) Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J Clin Oncol 5:1430–1440

    PubMed  Google Scholar 

  • Cheung N, Walter EI, Smith-Mensah WH et al. (1988) Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro. J Clin Invest 81:1122–1128

    PubMed  Google Scholar 

  • Cheung N, Lazarus H, Miraldi FD et al. (1992) Reassessment of patient response to monoclonal antibody 3F8. J Clin Oncol 10:671–674

    PubMed  Google Scholar 

  • Cheung N, Canete A, Cheung IY et al. (1993) Disialoganglioside GD2 anti-idiotypic monoclonal antibodies. Int J Cancer 54:499–505

    PubMed  Google Scholar 

  • Cheung N, Cheung IY, Canete A et al. (1994) Antibody response to murine anti-GD2 monoclonal antibodies: correlation with patient survival. Cancer Res 54:2228–2233

    PubMed  Google Scholar 

  • Cheung N, Kushner BH, Cheung IY et al. (1998a) Anti-G(D2) antibody treatment of minimal residual stage 4 neuroblastoma diagnosed at more than 1 year of age. J Clin Oncol 16:3053–3060

    PubMed  Google Scholar 

  • Cheung N, Kushner BH, Yeh SD et al. (1998b) 3F8 monoclonal antibody treatment of patients with stage 4 neuroblastoma: a phase II study. Int J Oncol 12:1299–1306

    PubMed  Google Scholar 

  • Cheung N, Yu A (2000) Immunotherapy of neuroblastoma. In: Brodeur GM, Sawada T, Tsuchida Y et al. (eds) Neuroblastoma. Elsevier, Philadelphia, pp 541–546

    Google Scholar 

  • Cheung N, Guo HF, Heller G et al. (2000) Induction of Ab3 and Ab3′ antibody was associated with long-term survival after anti-G(D2) antibody therapy of stage 4 neuroblastoma. Clin Cancer Res 6:2653–2660

    PubMed  Google Scholar 

  • Cheung N, Kushner BH, Kramer K (2001a) Monoclonal antibody-based therapy of neuroblastoma. Hematol Oncol Clin North Am 15:853–866

    Article  PubMed  Google Scholar 

  • Cheung N, Kushner BH, LaQuaglia M et al. (2001b) N7: a novel multi-modality therapy of high risk neuroblastoma (NB) in children diagnosed over 1 year of age. Med Pediatr Oncol 36:227–230

    PubMed  Google Scholar 

  • Cheung N, Modak S (2002) Oral (1–3,(1–4)-beta-glucan syngergizes with anti-ganglioside GD2 monoclonal antibody 3F8 in the therapy of neuroblastoma. Clin Cancer Res 8:1217–1223

    PubMed  Google Scholar 

  • Cheung N, Rooney C (2002) Principles of immune and cellular therapy. In: Pizzo PA, Poplack DG (eds) Principles and practice of pediatric oncology, 4th edn. Lippincott, Philadelphia, pp 381–408

    Google Scholar 

  • Cheung NK, Guo HF, Modak S et al. (2002) Anti-idiotypic antibody as the surrogate antigen for cloning scFv and its fusion proteins. Hybrid Hybridomics 21:433–443

    Article  PubMed  Google Scholar 

  • Cheung N, Guo HF, Modak S et al. (2003) Anti-idiotypic antibody facilitates scFv chimeric immune receptor gene transduction and clonal expansion of human lymphocytes for tumor therapy. Hybrid Hybridom 22:209–218

    Article  Google Scholar 

  • Cheung N (2004) Therapeutic antibodies and immunologic conjugates. In: Abeloff MD (ed) Clinical oncology. Churchill Livingstone, Edinburgh, pp 661–666

    Google Scholar 

  • Cheung NK, Modak S, Lin Y, Guo H, Zanzonico P, Chung J, Zuo Y, Sanderson J, Wilbert S, Theodore LJ, Axworthy DB, Larson SM (2004) Single chain Fv-streptavidin substantially improved therapeutic index in multi-step targeting directed at disialoganglioside GD2. J Nucl Med 45:867–877

    PubMed  Google Scholar 

  • Colucci F, Caligiuri MA, Santo JP di (2003) What does it take to make a natural killer? Nat Rev Immunol 3:413–425

    Article  PubMed  Google Scholar 

  • Coze C, Leimig T, Jimeno MT et al. (2001) Retrovirus-mediated gene transfer of the cytokine genes interleukin-1beta and tumor necrosis factor-alpha into human neuroblastoma cells: consequences for cell line behavior and immunomodulatory properties. Eur Cytokine Netw 12:78–86

    PubMed  Google Scholar 

  • Cremonesi M, Ferrari M, Chinol M et al. (1999) Three-step radioimmunotherapy with yttrium-90 biotin: dosimetry and pharmacokinetics in cancer patients. Eur J Nucl Med 26:110–120

    Article  PubMed  Google Scholar 

  • Davidoff AM, Kimbrough SA, Ng CY et al. (1999) Neuroblastoma regression and immunity induced by transgenic expression of interleukin-12. J Pediatr Surg 34:902–907

    Article  PubMed  Google Scholar 

  • Davis CA, Gillies SA (2003) Immunocytokines: amplification of anti-cancer immunity. Cancer Immunol Immunother 52:297–308

    PubMed  Google Scholar 

  • Diefenbach A, Raulet DH (2002) The innate immune response to tumors and its role in the induction of T-cell immunity. Immunol Rev 188:9–21

    Article  PubMed  Google Scholar 

  • Doubrovina ES, Doubrovin MM, Vider E et al. (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171:6891–6899

    PubMed  Google Scholar 

  • Edwards BS, Nolla HA, Hoffman RR (1992) Resolution of adhesion-and activation-associated components of monoclonal antibody-dependent human NK cell-mediated cytotoxicity. Cell Immunol 144:55–68

    Article  PubMed  Google Scholar 

  • Enomoto A, Kato K, Yagita H et al. (1997) Adoptive transfer of cytotoxic T lymphocytes induced by CD86-transfected tumor cells suppresses multi-organ metastases of C1300 neuroblastoma in mice. Cancer Immunol Immunother 44:204–210

    Article  PubMed  Google Scholar 

  • Evans AE, Main E, Zier K et al. (1989) The effects of gamma interferon on natural killer and tumor cells of children with neuroblastoma. A preliminary report. Cancer 64:1383–1387

    PubMed  Google Scholar 

  • Evans AE, August CS, Kamani N et al. (1994) Bone marrow transplantation for high risk neuroblastoma at the Children's Hospital of Philadelphia: an update. Med Pediatr Oncol 23:323–327

    PubMed  Google Scholar 

  • Favrot MC, Michon J, Floret D et al. (1990) Interleukin 2 immunotherapy in children with neuroblastoma after high-dose chemotherapy and autologous bone marrow transplantation. Pediatr Hematol Oncol 7:275–284

    PubMed  Google Scholar 

  • Foon KA, Lutzky J, Baral RN et al. (2000) Clinical and immune responses in advanced melanoma patients immunized with an anti-idiotype antibody mimicking disialoganglioside GD2. J Clin Oncol 18:376–384

    PubMed  Google Scholar 

  • Friedrich SW, Lin SC, Stoll BR et al. (2002) Antibody-directed effector cell therapy of tumors: analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia 4:449–463

    Article  PubMed  Google Scholar 

  • Frost JD, Hank JA, Reaman GH et al. (1997) A phase I/IB trial of murine monoclonal anti-GD2 antibody 14.G2a plus interleukin-2 in children with refractory neuroblastoma. Cancer 80:317–333

    Article  PubMed  Google Scholar 

  • Geiger JD, Hutchinson RJ, Hohenkirk LF et al. (2001) Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 61:8513–8519

    PubMed  Google Scholar 

  • Goldenberg DM (2003) Advancing role of radiolabeled antibodies in the therapy of cancer. Cancer Immunol Immunother 52:281–296

    PubMed  Google Scholar 

  • Goldenberg DM, Chang CH, Sharkey RM et al. (2003) Radioimmunotherapy: Is avidin-biotin pretargeting the preferred choice among pretargeting methods? Eur J Nucl Med Mol Imaging 30:777–780

    PubMed  Google Scholar 

  • Goldman A, Vivian G, Gordon I et al. (1984) Immunolocalization of neuroblastoma using radiolabeled monoclonal antibody UJ13A. J Pediatr 105:252–256

    PubMed  Google Scholar 

  • Gorter A, Meri S (1999) Immune evasion of tumor cells using membrane-bound complement regulatory proteins. Immunol Today 20:576–582

    Article  PubMed  Google Scholar 

  • Gutheil JC, Campbell TN, Pierce PR et al. (2000) Targeted antiangiogenic therapy for cancer using Vitaxin: a humanized monoclonal antibody to the integrin alphavbeta3. Clin Cancer Res 6:3056–3061

    PubMed  Google Scholar 

  • Haight AE, Bowman LC, Ng CY et al. (2000) Humoral response to vaccination with interleukin-2-expressing allogeneic neuroblastoma cells after primary therapy. Med Pediatr Oncol 35:712–715

    Article  PubMed  Google Scholar 

  • Halin C, Neri D (2001) Antibody-Based targeting of angiogenesis. Crit Rev Ther Drug Carrier Syst 18:299–339

    PubMed  Google Scholar 

  • Handgretinger R, Anderson K, Lang P et al. (1995) A phase I study of human/mouse chimeric antiganglioside GD2 antibody ch 14.18 in patients with neuroblastoma. Eur J Cancer 31:261–267

    Article  Google Scholar 

  • Handgretinger R, Bruchelt G, Schneider M et al. (1987) Application of interleukin 2 in neuroblastoma. Haematol Blood Transfus 31:116–119

    PubMed  Google Scholar 

  • Handgretinger R, Baader P, Dopfer R et al. (1992) A phase I study of neuroblastoma with the anti-ganglioside GD2 antibody 14.G2a. Cancer Immunol Immunother 35:199–204

    Article  PubMed  Google Scholar 

  • Hank JA, Robinson RR, Surfus J et al. (1990) Augmentation of antibody dependent cell mediated cytotoxicity following in vivo therapy with recombinant interleukin-2. Cancer Res 50:5234–5239

    PubMed  Google Scholar 

  • Hank JA, Surfus JE, Gan J et al. (1996) Activation of human effector cells by a tumor reactive recombinant anti-ganglioside GD2 interleukin-2 fusion protein (ch 14.18-IL2). Clin Cancer Res 2:1951–1959

    PubMed  Google Scholar 

  • Heitger A, Ladisch S (1996) Gangliosides block antigen presentation by human monocytes. Biochim Biophys Acta 1303:161–168

    PubMed  Google Scholar 

  • Heuer JG, Tucker-McClung C, Hock RA (1999) Neuroblastoma cells expressing mature IL-18, but not proIL-18, induce a strong and immediate antitumor immune response. J Immunother 22:324–335

    PubMed  Google Scholar 

  • Hock RA, Reynolds BD, Tucker-McClung CL et al. (1995) Human class II major histocompatibility complex gene transfer into murine neuroblastoma leads to loss of tumorigenicity, immunity against subsequent tumor challenge, and elimination of microscopic preestablished tumors. J Immunother Emphasis Tumor Immunol 17:12–18

    PubMed  Google Scholar 

  • Hoefnagel CA, Rutgers M, Buitenhuis CK et al. (2001) A comparison of targeting of neuroblastoma with mIBG and anti L1-CAM antibody mAb chCE7: therapeutic efficacy in a neuroblastoma xenograft model and imaging of neuroblastoma patients. Eur J Nucl Med 28:359–368

    Article  PubMed  Google Scholar 

  • Hofheinz RD, Al-Batran SE, Hartmann F et al. (2003) Stromal antigen targeting by a humanised monoclonal antibody: an early phase II Trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 26:44–48

    Article  PubMed  Google Scholar 

  • Holzer U, Bethge W, Krull F et al. (1995) Superantigen-staphylococcal-enterotoxin-A-dependent and antibody-targeted lysis of GD2-positive neuroblastoma cells. Cancer Immunol Immunother 41:129–136

    PubMed  Google Scholar 

  • Houghton AN, Mintzer D, Cordon-Cardo C et al. (1985) Mouse monoclonal IgG3 antibody detecting GD3 ganglioside: a phase I trial in patients with malignant melanoma. Proc Natl Acad Sci USA 82:1242–1246

    PubMed  Google Scholar 

  • Huang CS, Utterreuther M, Reisfeld RA (1992) Immunotherapy of GD2+ tumors with a murine monoclonal antibody (MAB) 14G2a; a phase I study. Proc ASCO 11:364

    Google Scholar 

  • Hugli TE, Muller-Eberhard HJ (1978) Anaphylatoxins: C3a and C5a. Adv Immunol 26:1–53

    PubMed  Google Scholar 

  • Ishida H, Matsumura T, Salgaller ML et al. (1996) MAGE-1 and MAGE-3 or-6 expression in neuroblastoma-related pediatric solid tumors. Int J Cancer 69:375–380

    Article  PubMed  Google Scholar 

  • Jameson J, Witherden D, Havran WL (2003) T-cell effector mechanisms: gammadelta and CD1d-restricted subsets. Curr Opin Immunol 15:349–353

    Article  PubMed  Google Scholar 

  • Janeway CA, Travers P, Walport M et al. (2001) Immunobiology-5: the immune system in health and disease, 5th edn. Garland Publishing, Taylor and Francis Group, New York

    Google Scholar 

  • Juhl H, Petrella EC, Cheung NK et al. (1997) Additive cytotoxicity of different monoclonal antibody-cobra venom factor conjugates for human neuroblastoma cells. Immunobiology 197:444–459

    PubMed  Google Scholar 

  • Jurcic JG, Larson SM, Sgouros G et al. (2002) Targeted alpha particle immunotherapy for myeloid leukemia. Blood 100:1233–1239

    PubMed  Google Scholar 

  • Kawashima I, Tada N, Ikegami S et al. (1988) Mouse monoclonal antibodies detecting disialogangliosides on mouse and human T lymphomas. Int J Cancer 41:267–274

    PubMed  Google Scholar 

  • Kemshead JT, Goldman A, Jones D et al. (1985) Therapeutic application of radiolabelled monoclonal antibody UJ13A in children with disseminated neuroblastoma-a phase I study. In: Evans AE, D'Angio GJ, Seeger RC (eds) Advances in neuroblastoma research. Prog Clin Biol Res. Liss, New York, pp 533–544

    Google Scholar 

  • Kennedy RC, Zhou EM, Lanford RE et al. (1987) Possible role of anti-idiotypic antibodies in the induction of tumor immunity. J Clin Invest 80:1217–1224

    PubMed  Google Scholar 

  • Kimberly RP, Wu J, Gibson AW et al. (2002) Diversity and duplicity: human FCgamma receptors in host defense and autoimmunity. Immunol Res 26:177–189

    Article  PubMed  Google Scholar 

  • King D, Albertini M, Schalch H et al. (2002) Phase I/II trial of the immunocytokine hu14.18-IL2 in patients with metastatic melanoma. Proc Am Soc Clin Oncol 21:16a

    Google Scholar 

  • Koehler G, Milstein C (1975) Continuous culture of fused cells secreting antibody of pre-defined specificity. Nature 256:495–496

    Article  PubMed  Google Scholar 

  • Koehne G, Guo HF, Trivedi RY et al. (2003) Redirecting NK-cell cytolytic activity to solid tumors using chimeric scFv receptor gene-modified adoptive immunotherapy. Proc Am Soc Clin Oncol 22:175

    Google Scholar 

  • Kramer K, Gerald WL, Kushner BH et al. (1998) Disialoganglioside G(D2) loss following monoclonal antibody therapy is rare in neuroblastoma. Clin Cancer Res 4:2135–2139

    PubMed  Google Scholar 

  • Kramer K, Cheung NK, Humm JL et al. (2000) Targeted radioimmunotherapy for leptomeningeal cancer using (131)I-3F8. Med Pediatr Oncol 35:716–718

    Article  PubMed  Google Scholar 

  • Krause A, Guo HF, Latouche JB et al. (1998) Antigen-dependent CD28 signaling electively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med 188:619–626

    Article  PubMed  Google Scholar 

  • Kronenberg M, Gapin L (2002) The unconventional lifestyle of NKT cells. Nat Rev Immunol 2:557–568

    PubMed  Google Scholar 

  • Kushner BH, Cheung NK (1989) GM-CSF enhances 3F8 monoclonal antibody-dependent cellular cytotoxicity against human melanoma and neuroblastoma. Blood 73:1936–1941

    PubMed  Google Scholar 

  • Kushner BH, Cheung NK (1992) Absolute requirement of CD11/ CD18 adhesion molecules, FcRII and the phosphatidylinositol-linked FcRIII for monoclonal antibody-mediated neutrophil antihuman tumor cytotoxicity. Blood 79:1484–1490

    PubMed  Google Scholar 

  • Kushner BH, Kramer K, Cheung NKV (2001) Phase II trial of the anti-G(D2) monoclonal antibody 3F8 and granulocyte-macrophage colony-stimulating factor for neuroblastoma. J Clin Oncol 19:4189–4194

    PubMed  Google Scholar 

  • Lammie GA, Cheung NKV, Gerald W et al. (1993) Ganglioside GD2 expression in the human nervous system and in neuroblastomas: an immunohistochemical study. Int J Oncol 3:909–915

    Google Scholar 

  • Lampson LA, Fisher CA, Whelan JP (1983) Striking paucity of HLA-A, B, C and B2-microglobulin on human neuroblastoma cell lines. J Immunol 130:2471–2478

    PubMed  Google Scholar 

  • Larson SM, Pentlow KS, Volkow ND et al. (1991) PET scanning of 124I-3F8 as a novel method of tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. Antibody Immunoconjug Radiopharmaceut 4:34

    Google Scholar 

  • Larson SM, Divgi C, Sgouros G et al. (2000) Monoclonal antibodies: basic principles — radioisotope conjugates. In: De-Vita VT, Hellman S, Rosenberg SA (eds) Biologic therapy of cancer: principles and practice. Lippincott, Philadelphia, pp 396–412

    Google Scholar 

  • Lashford L, Jones D, Pritchard J et al. (1987) Therapeutic application of radiolabeled monoclonal antibody UJ13A in children with disseminated neuroblastoma. NCI Monogr 3:53–57

    PubMed  Google Scholar 

  • Lashford LS, Davies AG, Richardson RB et al. (1988) A pilot study of 131I monoclonal antibodies in the therapy of leptomeningeal tumors. Cancer 61:857–868

    PubMed  Google Scholar 

  • Li JH, Rosen D, Sondel P et al. (2002) Immune privilege and FasL: two ways to inactivate effector cytotoxic T lymphocytes by FasL-expressing cells. Immunology 105:267–277

    Article  PubMed  Google Scholar 

  • Li R, Villacreses N, Ladisch S (1995) Human tumor gangliosides inhibit murine immune responses in vivo. Cancer Res 55:211–214

    PubMed  Google Scholar 

  • Lode HN, Reisfeld RA (2000) Targeted cytokines for cancer immunotherapy. Immunol Res 21:279–288

    Article  PubMed  Google Scholar 

  • Lode HN, Xiang R, Varki NM et al. (1997) Targeted interleukin-2 therapy for spontaneous neuroblastoma metastases to bone marrow. J Natl Cancer Inst 89:1586–1594

    Article  PubMed  Google Scholar 

  • Lode HN, Moehler T, Xiang R et al. (1999) Synergy between an antiangiogenic integrin alphav antagonist and an antibody-cytokine fusion protein eradicates spontaneous tumor metastases. Proc Natl Acad Sci USA 96:1591–1596

    Article  PubMed  Google Scholar 

  • Lynch TJ Jr, Lambert JM, Coral F et al. (1997) Immunotoxin therapy of small-cell lung cancer: a phase I study of N901-blocked ricin. J Clin Oncol 15:723–734

    PubMed  Google Scholar 

  • Manzke O, Russello O, Leenen C et al. (2001) Immunotherapeutic strategies in neuroblastoma: antitumoral activity of deglycosylated Ricin A conjugated anti-GD2 antibodies and anti-CD3xanti-GD2 bispecific antibodies. Med Pediatr Oncol 36:185–189

    Article  PubMed  Google Scholar 

  • Marti F, Pardo N, Peiro M et al. (1995) Progression of natural immunity during one-year treatment of residual disease in neuroblastoma patients with high doses of interleukin-2 after autologous bone marrow transplantation. Exp Hematol 23:1445–1452

    PubMed  Google Scholar 

  • Masucci G, Ragnhammar P, Wersall P et al. (1990) Granulocytemonocyte colony-stimulating-factor augments the interleukin-2-induced cytotoxic activity of human lymphocytes in the absence and presence of mouse or chimeric monoclonal antibodies (mAb 17-1A). Cancer Immunol Immunother 31:231–235

    Article  PubMed  Google Scholar 

  • Matthay KK, Seeger RC, Reynolds CP et al. (1994) Allogeneic versus autologous purged bone marrow transplantation for neuroblastoma: a report from the Childrens Cancer Group. J Clin Oncol 12:2382–2389

    PubMed  Google Scholar 

  • McDevitt MR, Sgouros G, Finn RD et al. (1998) Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 25:1341–1351

    Article  PubMed  Google Scholar 

  • McGarry RC, Pinto A, Hammersley-Straw DR et al. (1988) Expression of markers shared between human natural killer cells and neuroblastoma lines. Cancer Immunol Immunother 27:47–52

    Article  PubMed  Google Scholar 

  • Mendelsohn J (2003) Antibody-mediated EGF receptor blockade as an anticancer therapy: from the laboratory to the clinic. Cancer Immunol Immunother 52:342–346

    PubMed  Google Scholar 

  • Metelitsa LS, Gillies SD, Super M et al. (2002) Antidisialoganglioside/granulocyte macrophage-colony-stimulating factor fusion protein facilitates neutrophil antibody-dependent cellular cytotoxicity and depends on FcgammaRII (CD32) and Mac-1 (CD11b/CD18) for enhanced effector cell adhesion and azurophil granule exocytosis. Blood 99:4166–4173

    Article  PubMed  Google Scholar 

  • Metelitsa LS, Naidenko OV, Kant A et al. (2001) Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells. J Immunol 167:3114–3122

    PubMed  Google Scholar 

  • Michon J, Moutel S, Barbet J et al. (1995a) In vitro killing of neuroblastoma cells by neutrophils derived from granulocyte colony-stimulating factor-treated cancer patients using an anti-disialoganglioside/anti-Fc gamma RI bispecific antibody. Blood 86:1124–1130

    PubMed  Google Scholar 

  • Michon J, Perdereau B, Brixy F et al. (1995b) In vivo targeting of human neuroblastoma xenograft by anti-GD2/anti-Fc gamma RI (CD64) bispecific antibody. Eur J Cancer 31A:631–636

    Article  PubMed  Google Scholar 

  • Miraldi FD, Nelson AD, Kraly C et al. (1986) Diagnostic imaging of human neuroblastoma with radiolabeled antibody. Radiology 161:413–418

    PubMed  Google Scholar 

  • Modak S, Kramer K, Gultekin SH et al. (2001) Monoclonal antibody 8H9 targets a novel cell surface antigen expressed by a wide spectrum of human solid tumors. Cancer Res 61:4048–4054

    PubMed  Google Scholar 

  • Moutel S, Birkle S, Laurence V et al. (1997) Generation and characterization of a mouse single-chain antibody fragment specific for disialoganglioside (GD2). Hybridoma 16:335–346

    PubMed  Google Scholar 

  • Mujoo K, Reisfeld RA, Cheung L et al. (1991) A potent and specific immunotoxin for tumor cells expressing disialoganglioside GD2. Cancer Immunol Immunother 34:198–204

    Article  PubMed  Google Scholar 

  • Munn DH, Cheung NK (1987) Interleukin-2 enhancement of monoclonal antibody-mediated cellular cytotoxicity (ADCC) against human melanoma. Cancer Res 47:6600–6605

    PubMed  Google Scholar 

  • Murray JL, Cunningham JE, Brewer H et al. (1994) Phase I trial of murine monoclonal antibody 14G2a administered by prolonged intravenous infusion in patients with neuroectodermal tumors. J Clin Oncol 12:184–193

    PubMed  Google Scholar 

  • Nakamura K, Tanaka Y, Shitara K et al. (2001) Construction of humanized anti-ganglioside monoclonal antibodies with potent immune effector functions. Cancer Immunol Immunother 50:275–284

    PubMed  Google Scholar 

  • Neal ZC, Imboden M, Rakhmilevich AL et al. (2003) Recurrent murine neuroblastomas increase or decrease MHC class I expression to escape NK-or T cell dependent immune destruction. Cancer Immunol Immunother 53:41–52

    Article  PubMed  Google Scholar 

  • Novak-Hofer I, Honer M, Ametamey S et al. (2003) Imaging of renal carcinoma xenografts with (64)Cu-labelled anti-L1-CAM antibody chCE7. Eur J Nucl Med Mol Imaging 30:1066

    Article  PubMed  Google Scholar 

  • Ohta S, Igarashi S, Honda A et al. (1993) Cytotoxicity of adriamycin-containing immunoliposomes targeted with antiganglioside monoclonal antibodies. Anticancer Res 13:331–336

    PubMed  Google Scholar 

  • Ollert MW, David K, Schmitt C et al. (1996) Normal human serum contains a natural IgM antibody cytotoxic for human neuroblastoma cells. Proc Natl Acad Sci USA 93:4498–4503

    Article  PubMed  Google Scholar 

  • Ottonello L, Epstein AL, Dapino P et al. (1999) Monoclonal Lym-1 antibody-dependent cytolysis by neutrophils exposed to granulocyte-macrophage colony-stimulating factor: intervention of FcgammaRII (CD32), CD11b-CD18 integrins, and CD66b glycoproteins. Blood 93:3505–3511

    PubMed  Google Scholar 

  • Ozkaynak MF, Sondel PM, Krailo MD et al. (2000) Phase I study of chimeric human/murine antiganglioside GD2 monoclonal antibody (ch14.18) with granulocyte-macrophage colony-stimulating factor in children with neuroblastoma inmmediately after hematopoietic stem-cell transplantation: a Children's Cancer Group Study. J Clin Oncol 18:4077–4085

    PubMed  Google Scholar 

  • Paganelli G, Bartolomei M, Ferrari M et al. (2001) Pre-targeted locoregional radioimmunotherapy with 90Y-biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother Radiopharm 16:227–235

    Article  PubMed  Google Scholar 

  • Passoni L, Scardino A, Bertazzoli C et al. (2002) ALK as a novel lymphoma-associated tumor antigen: identification of 2 HLA-A2.1-restricted CD8+ T-cell epitopes. Blood 99:2100–2106

    Article  PubMed  Google Scholar 

  • Pastan I (2003) Immunotoxins containing Pseudomonas exotoxin A: a short history. Cancer Immunol Immunother 52:338–341

    PubMed  Google Scholar 

  • Pertl U, Luster AD, Varki NM et al. (2001) IFN-gamma-inducible protein-10 is essential for the generation of a protective tumor-specific CD8 T cell response induced by single-chain IL-12 gene therapy. J Immunol 166:6944–6951

    PubMed  Google Scholar 

  • Pertl U, Wodrich H, Ruehlmann JM et al. (2003) Immunotherapy with a posttranscriptionally modified DNA vaccine induces complete protection against metastatic neuroblastoma. Blood 101:649–654

    Article  PubMed  Google Scholar 

  • Pession A, Prete A, Locatelli F et al. (1998) Immunotherapy with low-dose recombinant interleukin 2 after high-dose chemotherapy and autologous stem cell transplantation in neuroblastoma. Br J Cancer 78:528–533

    PubMed  Google Scholar 

  • Philip T, Ladenstein R, Lasset C et al. (1997) 1070 myeloablative megatherapy procedures followed by stem cell rescue for neuroblastoma: 17 years of European experience and conclusions. European Group for Blood and Marrow Transplant Registry Solid Tumour Working Party. Eur J Cancer 33:2130–2135

    Article  PubMed  Google Scholar 

  • Podoloff JL, Murray JL, Bhadkamkar VA et al. (1991) Radioimmunolocalization (RIL) of an anti-ganglioside antibody directed against GD2 ganglioside: imaging considerations. J Nucl Med 32:970

    Google Scholar 

  • Posey JA, Ng TC, Yang B et al. (2003) A phase I study of anti-kinase insert domain-containing receptor antibody, IMC-1C11, in patients with liver metastases from colorectal carcinoma. Clin Cancer Res 9:1323–1332

    PubMed  Google Scholar 

  • Presta LG, Chen H, O'Connor SJ et al. (1997) Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57:4593–4599

    PubMed  Google Scholar 

  • Prewett M, Huber J, Li Y et al. (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59:5209–5218

    PubMed  Google Scholar 

  • Raffaghello L, Pagnan G, Pastorino F et al. (2003) In vitro and in vivo antitumor activity of liposomal Fenretinide targeted to human neuroblastoma. Int J Cancer 104:559–567

    Article  PubMed  Google Scholar 

  • Raffaghello L, Airoldi I, Prigione I et al. (2004) Functional expression and release of ligands for the activating immunoreceptor NKG2D in human neuroblastoma. Adv Neuroblast Res 11th abstract #202.1

    Google Scholar 

  • Ragupathi G, Livingston P, Hood C et al. (2003) Immunogenicity of GD2 lactone (GD2L)-KLH conjugate plus immunological adjuvant QS-21 vaccine in patients wtih melanoma. Clin Cancer Res 9:5214–5220

    PubMed  Google Scholar 

  • Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290

    Article  PubMed  Google Scholar 

  • Reiter Y (2001) Recombinant immunotoxins in targeted cancer cell therapy. Adv Cancer Res 81:93–124

    PubMed  Google Scholar 

  • Roguska MA, Pedersen JT, Henry AH et al. (1996) A comparison of two murine monoclonal antibodies humanized by CDR-grafting and variable domain resurfacing. Protein Eng 9:895–904

    PubMed  Google Scholar 

  • Ross GD, Vetvicka V, Yan J et al. (1999) Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 42:61–74

    Article  PubMed  Google Scholar 

  • Rossig C, Bollard CM, Nuchtern JG et al. (2001) Targeting of G(D2)-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int J Cancer 94:228–236

    Article  PubMed  Google Scholar 

  • Rousseau RF, Haight AE, Hirschmann-Jax C et al. (2003) Local and systemic effects of an allogeneic tumor cell vaccine combining transgenic human lymphotactin with interleukin-2 in patients with advanced or refractory neuroblastoma. Blood 101:1718–1726

    Article  PubMed  Google Scholar 

  • Sandler AD, Chihara H, Kobayashi G et al. (2003) CpG oligonucleotides enhance the tumor antigen-specific immune response of a granulocyte macrophage colony-stimulating factor-based vaccine strategy in neuroblastoma. Cancer Res 63:394–399

    PubMed  Google Scholar 

  • Sarkar AK, Nuchtern JG (2000) Lysis of MYCN-amplified neuroblastoma cells by MYCN peptide-specific cytotoxic T lymphocytes. Cancer Res 60:1908–1913

    PubMed  Google Scholar 

  • Satoh J, Kurohara K, Yukitake M et al. (1998) Interleukin-15, a T-cell growth factor, is expressed in human neural cell lines and tissues. J Neurol Sci 155:170–177

    Article  PubMed  Google Scholar 

  • Scanlan MJ, Gure AO, Jungbluth AA et al. (2002) Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol Rev 188:22–32

    Article  PubMed  Google Scholar 

  • Scheffold C, Kornacker M, Scheffold YC et al. (2002) Visualization of effective tumor targeting by CD8+ natural killer T cells redirected with bispecific antibody F(ab')(2) HER2xCD3. Cancer Res 62:5785–5791

    PubMed  Google Scholar 

  • Schilbach KE, Geiselhart A, Wessels JT et al. (2000) Human gammadelta T lymphocytes exert natural and IL-2-induced cytotoxicity to neuroblastoma cells. J Immunother 23:536–548

    Article  PubMed  Google Scholar 

  • Schonmann SM, Iyer J, Laeng H et al. (1986) Production and characterization of monoclonal antibodies against human neuroblastoma. Int J Cancer 37:255–262

    PubMed  Google Scholar 

  • Schulz G, Cheresh DA, Varki NM et al. (1984) Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res 44:5914–5920

    PubMed  Google Scholar 

  • Scott AM, Lee FT, Hopkins W et al. (2001) Specific targeting, biodistribution, and lack of immunogenicity of chimeric anti-GD3 monoclonal antibody KM871 in patients with metastatic melanoma: results of a phase I trial. J Clin Oncol 19:3976–3987

    PubMed  Google Scholar 

  • Sen G, Chakraborty M, Foon KA et al. (1998) Induction of IgG antibodies by an anti-idiotype antibody mimicking disialoganglioside GD2. J Immunother 21:75–83

    PubMed  Google Scholar 

  • Shen W, Ladisch S (2002) Ganglioside GD1a impedes lipopolysaccharide-induced maturation of human dendritic cells. Cell Immunol 220:125–133

    Article  PubMed  Google Scholar 

  • Shimizu M, Fontana A, Takeda Y et al. (1999) Induction of antitumor immunity with Fas/APO-1 ligand (CD95L)-transfected neuroblastoma neuro-2a cells. J Immunol 162:7350–7357

    PubMed  Google Scholar 

  • Shimizu T, Berhanu A, Redlinger RE Jr et al. (2001) Interleukin-12 transduced dendritic cells induce regression of established murine neuroblastoma. J Pediatr Surg 36:1285–1292

    Article  PubMed  Google Scholar 

  • Shurin GV, Gerein V, Lotze MT et al. (1998) Apoptosis induced in T cells by human neuroblastoma cells: role of Fas ligand. Nat Immun 16:263–274

    Article  PubMed  Google Scholar 

  • Shurin GV, Shurin MR, Bykovskaia S et al. (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369

    PubMed  Google Scholar 

  • Siapati KE, Barker S, Kinnon C et al. (2003) Improved antitumour immunity in murine neuroblastoma using a combination of IL-2 and IL-12. Br J Cancer 88:1641–1648

    Article  PubMed  Google Scholar 

  • Smolarz K, Waters W, Sieverts H et al. (1989) Immunoscintigraphy with Tc-99m-labeled monoclonal antibody BW575 compared with I-123 MIBG scintigraphy in neuroblastoma. Radiology 173:152–153

    Google Scholar 

  • Smyth MJ, Crowe NY, Hayakawa Y et al. (2002) NKT cells: conductors of tumor immunity? Curr Opin Immunol 14:165–171

    Article  PubMed  Google Scholar 

  • Soling A, Schurr P, Berthold F (1999) Expression and clinical relevance of NY-ESO-1,MAGE-1 and MAGE-3 in neuroblastoma. Anticancer Res 19:2205–2209

    PubMed  Google Scholar 

  • Sondel PM, Hank JA (1997) Combination therapy with interleukin-2 and antitumor monoclonal antibodies. Cancer J Sci Am 3(Suppl 1):S121–S127

    PubMed  Google Scholar 

  • Tai T, Cahan LD, Paulson JC et al. (1984) Human monoclonal antibody against ganglioside GD2: use in development of enzyme-linked immunosorbent assay for the monitoring of anti-GD2 in cancer patients. J Natl Cancer Inst 73:627–633

    PubMed  Google Scholar 

  • Takamizawa S, Okamoto S, Wen J et al. (2000) Overexpression of Fas-ligand by neuroblastoma: a novel mechanism of tumor-cell killing. J Pediatr Surg 35:375–379

    Article  PubMed  Google Scholar 

  • Thomas PB, Delatte SJ, Sutphin A et al. (2002) Effective targeted cytotoxicity of neuroblastoma cells. J Pediatr Surg 37:539–544

    Article  PubMed  Google Scholar 

  • Todo T, Martuza RL, Dallman MJ et al. (2001) In situ expression of soluble B7-1 in the context of oncolytic herpes simplex virus induces potent antitumor immunity. Cancer Res 61:153–161

    PubMed  Google Scholar 

  • Toren A, Nagler A, Rozenfeld-Granot G et al. (2000) Amplification of immunological functions by subcutaneous injection of intermediate-high dose interleukin-2 for 2 years after autologous stem cell transplantation in children with stage IV neuroblastoma. Transplantation 70:1100–1104

    Article  PubMed  Google Scholar 

  • Tsao CY, Lou W, Wang S et al. (2002) Identification of GD2 ganglioside peptide mimics by using phage display peptide libraries. Proc Am Assoc Cancer Res 43:280

    Google Scholar 

  • Tur MK, Sasse S, Stocker M et al. (2001a) An anti-GD2 single chain Fv selected by phage display and fused to Pseudomonas exotoxin A develops specific cytotoxic activity against neuroblastoma derived cell lines. Int J Mol Med 8:579–584

    PubMed  Google Scholar 

  • Tur MK, Huhn M, Sasse S et al. (2001b) Selection of scFv phages on intact cells under low pH conditions leads to a significant loss of insert-free phages. Biotechniques 30:404–408, 410, 412–413

    PubMed  Google Scholar 

  • Turner JG, Rakhmilevich AL, Burdelya L et al. (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 166:89–94

    PubMed  Google Scholar 

  • Vaickus L, Biddle W, Cemerlic D et al. (1990) Interferon gamma augments Lym-1-dependent, granulocyte-mediated tumor cell lysis. Blood 75:2408–2416

    PubMed  Google Scholar 

  • Valteau-Couanet D, Leboulaire C, Maincent K et al. (2002) Dendritic cells for NK/LAK activation: rationale for multicellular immunotherapy in neuroblastoma patients. Blood 100:2554–2561

    Article  PubMed  Google Scholar 

  • Van der Bruggen P, Zhang Y, Chaux P et al. (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188:51–64

    Article  PubMed  Google Scholar 

  • Van Spriel AB, van Ojik HH, van de Winkel JG (2000) Immunotherapeutic perspective for bispecific antibodies. Immunol Today 21:391–397

    Article  PubMed  Google Scholar 

  • Vlk V, Eckschlager T, Kavan P et al. (2000) Clinical ineffectiveness of IL-2 and/or IFN alpha administration after autologous PBSC transplantation in pediatric oncological patients. Pediatr Hematol Oncol 17:31–44

    Article  PubMed  Google Scholar 

  • Wargalla UC, Reisfeld RA (1989) Rate of internalization of an immunotoxin correlates with cytotoxic activity against human tumor cells. Proc Natl Acad Sci USA 86:5146–5150

    PubMed  Google Scholar 

  • Wigginton JM, Wiltrout RH (2002) IL-12/IL-2 combination cytokine therapy for solid tumours: translation from bench to bedside. Exp Opin Biol Ther 2:513–524

    Article  Google Scholar 

  • Wu DY, Segal NH, Sidobre S et al. (2003) Cross-presentation of Disialoganglioside GD3 to Natural Killer T Cells. J Exp Med 198:173–181

    Article  PubMed  Google Scholar 

  • Xiao W-h, Yu A, Sorkin LS (1997) Electrophysiological characteristics of primary afferent fibers after systemic administration of anti-GD2 ganglioside antibody. Pain 69:145–151

    Article  PubMed  Google Scholar 

  • Yeh SD, Larson SM, Burch L et al. (1991) Radioimmunodetection of neuroblastoma with iodine-131-3F8: correlation with biopsy, iodine-131-metaiodobenzylguanidine (MIBG) and standard diagnostic modalities. J Nucl Med 32:769–776

    PubMed  Google Scholar 

  • Yoshida H, Tanabe M, Miyauchi M et al. (1999) Induced immunity by expression of interleukin-2 or GM-CSF gene in murine neuroblastoma cells can generate antitumor response to established tumors. Cancer Gene Ther 6:395–401

    Article  PubMed  Google Scholar 

  • Yu AL, Batova A, Alvarado C, Rao VJ, Castelberry RP (1997) Usefulness of a chimeric anti-GD2 (ch.14.18) and GM-CSF for refractory neuroblastoma: a POG phase II study. Proc ASCO 16:1846

    Google Scholar 

  • Yu A, Uttenreuther-Fischer M, Huang C-S et al. (1998) Phase I trial of a human-mouse chimeric anti-disialoganglioside monoclonal antibody ch14.18 in patients with refractory neuroblastoma and osteosarcoma. J Clin Oncol 16:2169–2180

    PubMed  Google Scholar 

  • Yuki N, Yamada M, Tagawa Y et al. (1997) Pathogenesis of the neurotoxicity caused by anti-GD2 antibody therapy. J Neurol Sci 149:127–130

    Article  PubMed  Google Scholar 

  • Zalutsky MR, Vaidyanathan G (2000) Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alphaparticle radiotherapy. Curr Pharm Des 6:1433–1455

    Article  PubMed  Google Scholar 

  • Zeytin HE, Tripathi PK, Bhattacharya-Chatterjee M et al. (2000) Construction and characterization of DNA vaccines encoding the single-chain variable fragment of the anti-idiotype antibody 1A7 mimicking the tumor-associated antigen disialoganglioside GD2. Cancer Gene Therapy 7:1426–1436

    Article  PubMed  Google Scholar 

  • Zhu Z, Hattori K, Zhang H et al. (2003) Inhibition of human leukemia in an animal model with human antibodies directed against vascular endothelial growth factor receptor 2. Correlation between antibody affinity and biological activity. Leukemia 17:604–611

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheung, NK.V., Sondel, P.M. (2005). Immunology and Immunotherapy. In: Cheung, NK.V., Cohn, S.L. (eds) Neuroblastoma. Pediatric Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26616-X_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-26616-X_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40841-3

  • Online ISBN: 978-3-540-26616-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics