Skip to main content

Part of the book series: Soil Biology ((SOILBIOL,volume 3))

6 Conclusions

Microbial communities in soil represent a high diversity and density of biotic interactions. Fungi and bacteria dominate the microbial biomass and the potential activity is generally restricted by low nutrient availability in soil. Fresh plant residues and exudates provide the main internal source of nutrients in natural ecosystems. Substrate input rapidly stimulates catabolic and anabolic processes leading to high metabolic and microbial quotients. The respiratory quotient is additionally increased under growth conditions. The interaction between respiration, microbial C and organic C content in soil is discussed with reference to an integrative energetic indicator for soil organic matter quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson T-H (1994) Physiological analysis of microbial communities in soil: application and limitation. In: Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Wiley, Chichester, pp 67–76

    Google Scholar 

  • Anderson T-H, Domsch K-H (1985a) Maintenance requirement of actively metabolizing microbial populations under in situ conditions. Soil Biol Biochem 17:197–203

    CAS  Google Scholar 

  • Anderson T-H, Domsch K-H (1985b) Determination of ecophysiological maintenance carbon requirement of soil microorganisms in a dormant state. Biol Fertil Soil 1:81–89

    CAS  Google Scholar 

  • Anderson T-H, Domsch K-H (1989) Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol Biochem 21: 471–479

    Article  Google Scholar 

  • Anderson T-H, Gray TRG (1991) The influence of soil organic carbon on themicrobial growth and survival. In: Wilson ES (ed) The impact on agriculture and the environment. Adv Soil Organ Matter Res Spec Publ 90:253–266

    Google Scholar 

  • Atlas RM, Bartha R (1998) Microbial ecology: Fundamentals and Applications. Addison-Wesley, Reading

    Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter. Decomposition, humus formation, carbon sequestration. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bremer E, van Kessel C (1990) Extractability of microbial 14C and 15N following addition of variable rates of glucose and (NH4)2SO4 to soil. Soil Biol Biochem 22:707–713

    Article  CAS  Google Scholar 

  • Cheng W, Zhang Q, Coleman DC, Carroll CR, Hoffmann CA (1996) Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28:1283–1288

    Article  CAS  Google Scholar 

  • Cherepnev GV, Abreimova YV, Yakovleva GY, Kurinenko BM (2003) The morphological and physiological differences between fast-and slow-growing Escherichia coli cells. Microbiology 72:238–239

    Article  CAS  Google Scholar 

  • Dilly O (2001a) Microbial respiratory quotient during basal metabolism and after glucose amendment in soils and litter. Soil Biol Biochem 33: 117–127

    CAS  Google Scholar 

  • Dilly O (2001b) Metabolic and anabolic responses of four arable and forest soils to nutrient addition. J Plant Nutr Soil Sci 164:29–34

    CAS  Google Scholar 

  • Dilly O (2003) Regulation of the respiratory quotient of soil microbiota by availability of nutrients. FEMS Microb Ecol 43:375–381

    CAS  Google Scholar 

  • Dilly O, Munch JC (1996) Microbial biomass content, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus glutinosa (L.) Gaertn.) forest. Soil Biol Biochem 28:1073–1081

    Article  CAS  Google Scholar 

  • Dilly O, Winter K, Lang A, Munch JC (2001) Energetic eco-physiology of the soil microbiota in two landscapes of southern and northern Germany. J Plant Nutr Soil Sci 164:407–413

    CAS  Google Scholar 

  • Dilly O, Blume H-P, Sehy U, Jimenez M, Munch JC (2003) Variation of stabilised, microbial and biologically active carbon and nitrogen in soil under contrasting land use and agricultural management practices. Chemosphere 52:557–569

    Article  CAS  Google Scholar 

  • Elliott ET (1994) The potential use of soil biotic activity as an indicator of productivity, sustainability and pollution. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota. Management in sustainable farming systems. CSIRO, Melbourne, Australia, pp 250–256

    Google Scholar 

  • Elliott ET (1997) Rationale for developing bioindicators of soil health. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 49–78

    Google Scholar 

  • Fließbach A, Martens R, Reber HH (1994) Soil microbial biomass and microbial activity in soils treated with heavy metal contaminated sewage sludge. Soil Biol Biochem 26:1201–1205

    Google Scholar 

  • Gray TRG, Williams ST (1971) Soil microorganisms. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Grayston SJ, Vaugham D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: theimportance of root exudationandits impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Google Scholar 

  • Insam H, Haselwandter K (1989) Metabolic quotient of the soil microflora in relation to plant succession. Oecologia 79:174–178

    Article  Google Scholar 

  • Insam H, Hutchinson TC, Reber HH (1996) Effects of heavy metal stress on the metabolic quotient of the soil microflora. Soil Biol Biochem 28:491–494

    Article  Google Scholar 

  • ISSS/ISRIC/FAO (1998) World reference base for soil resources. World soil resources, report 84. FAO, Rome

    Google Scholar 

  • Joergensen RG (1995) Die quantitative Bestimmung der mikrobiellen Biomasse in Böden mit der Chloroform-Fumigations-Extraktions-Methode. Gött Bodenkd Ber 104:1–229

    Google Scholar 

  • Killham K (1994) Soil ecology. Cambridge University Press

    Google Scholar 

  • Kjøller A, Struwe S (1992) Functional groups of microfungi in decomposition. In: Carroll, GC, Wicklow DT (eds) The fungal community. Dekker, New York, pp 619–630

    Google Scholar 

  • Litz N (1992) Organische Verbindungen. In: Blume, H-P (ed) Handbuch des Bodenschutzes. Bodenökologie und-belastung. Vorbeugende und abwehrende Schutzmaßnahmen. Ecomed, Landsberg, pp 353–399

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (2003) Brock. Biology of microorganisms. Prentice Hall. Pearson Education, London

    Google Scholar 

  • Odum EP (1985) Trends expected in stressed ecosystems. BioScience 35:419–422

    Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San Diego

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. An analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Sparling GP (1992) Ratio between microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter. Aust J Soil Res 30:195–207

    Article  CAS  Google Scholar 

  • Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst C, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 97–119

    Google Scholar 

  • Swift MJ, Woomer P (1993) Organic matter and the sustainability of agricultural systems: definition and measurement. In: Mulongoy K, Merckx R (eds) Soil organic matter dynamics and sustainability of tropical agriculture. Wiley-Sayce Co-Publication, IITA/KU Leuven, pp 3–18

    Google Scholar 

  • Tate RL (2000) Soil microbiology. Wiley, New York

    Google Scholar 

  • Torsvik V, Goksøyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  Google Scholar 

  • Wardle DA, Ghani A (1995) A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem 27:1601–1610

    CAS  Google Scholar 

  • Winogradsky MS (1924) Sur la microflore autochtone de la terre arable. Comptes Rendus 178:1236–1239

    Google Scholar 

  • Witter A, Kanal E (1998) Characteristics of the soil microbial biomass in soils from a longterm field experiment with different levels of C input. Appl Soil Ecol 10:7–49

    Article  Google Scholar 

  • Ziegler H (1983) Physiologie des Stoff-und Energiestoffwechsels. In: Von Denffer D, Ziegler H, Ehrendorfer F, Bresinsky A (eds) Lehrbuch der Botanik für Hochschulen. Fischer, Stuttgart, pp 216–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dilly, O. (2005). Microbial Energetics in Soils. In: Varma, A., Buscot, F. (eds) Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26609-7_6

Download citation

Publish with us

Policies and ethics