Humification and Mineralization in Soils

  • Georg Guggenberger
Part of the Soil Biology book series (SOILBIOL, volume 3)


Soil Organic Matter Humic Substance Humic Acid Black Carbon Nuclear Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achard FC (1786) Chemische Untersuchungen des Torfs. Crell’s Chem Ann 2:391–403Google Scholar
  2. Aiken GR, McKnight DM, Wershaw RL, MacCarthy P (1985) Humic substances in soil, sediment and water. Wiley, New York, NYGoogle Scholar
  3. Almendros G, Dorado J (1999) Molecular characteristics related to the biodegradability of humic acid preparations. Eur J Soil Sci 50: 227–236CrossRefGoogle Scholar
  4. Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner MR (ed) Handbook of soil science. CRC Press, Boca Raton, pp B-25–B-84Google Scholar
  5. Baldock JA, Oades JM, Vassallo AM, Wilson MA (1990) Solid state CP/MAS 13C N.M.R. analysis of particle size and density fractions of a soil incubated with uniformly labelled 13C-glucose. Aust J Soil Sci 28: 193–212Google Scholar
  6. Benzing-Purdie L, Ripmeester J, Preston C (1983) Elucidation of the nitrogen forms in melanoidins and humic acids by nitrogen-15 cross polarization-magic angle spinning nuclear magnetic resonance spectroscopy. J Agric Food Chem 31:913–915CrossRefGoogle Scholar
  7. Bird MI, Moyo C, Veenendaal EM, Lloyd J, Howard DM (1999) Stability of elemental carbon in a savanna soil. Global Biogeochem Cycles 13: 923–932CrossRefGoogle Scholar
  8. Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136CrossRefGoogle Scholar
  9. Christensen BT (1996) Carbon in primary and secondary organo-mineral complexes. In: Carter MR, Stewart BA (eds) Advances in soil science — Structure and organic matter storage in agricultural soils. CRC Lewis, Boca Raton, pp 97–165Google Scholar
  10. DeLong EF, King LL, Massana R, Cittone H, Murray A, Schleper C, Wakeham SG (1998) Cyclic and acyclic dibiphytanyl ether lipids in marine psychrophilic crenarchaeotes: evolutionary and ecological implications. Appl Environ Microbiol 64:1133–1138Google Scholar
  11. Derenne S, Largeau C, Casadevall E, Berkaloff C, Rousseau B (1991) Chemical evidence of kerogen formation in source rocks and oil shales via selective preservation of thin resistant outer walls of microalgae: origin of ultralaminae. Geochim Cosmochim Acta 55:1041–1050CrossRefGoogle Scholar
  12. Derenne PS, Knicker H, Largeau C, Hatcher P (1998) Timing and mechanisms of changes in nitrogen functionality during biomass fossilization. In: Stankiewicz BA, van Bergen PF (eds) Nitrogen-containing macromolecules in the bio-and geosphere. ACS Symposium Series 707. American Chemical Society, Washington, DC, pp 245–253Google Scholar
  13. Evershed RP, Bland HA, van Bergen PF, Carter JC (1997) Volatile compounds in archaeological plant remains and the Maillard reaction during decay of organic matter. Science 278:432–433CrossRefGoogle Scholar
  14. Glaser B, Haumaier L, Guggenberger G, Zech W (1998) Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org Geochem 29:811–819CrossRefGoogle Scholar
  15. Glaser B, Balashov E, Haumaier L, Guggenberger G, Zech W (2000) Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org Geochem 31:669–678CrossRefGoogle Scholar
  16. Gleixner G, Bol R, Balesdent J (1999) Molecular insight into soil carbon turnover. Rapid Comm Mass Spectrom 13:1278–1283CrossRefGoogle Scholar
  17. Gleixner G, Czimczik C, Kramer C, Lühker BM, Schmidt MWI (2001) Plant compounds and their turnover and stability as soil organic matter. In: Schulze E-D, Heimann M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 201–216Google Scholar
  18. Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33:357–366CrossRefGoogle Scholar
  19. Goldberg ED (1985) Black carbon in the environment. Wiley, New YorkGoogle Scholar
  20. Gregorich G, Janzen HH (2000) Decomposition. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca Raton, pp C-107–C-119Google Scholar
  21. Guggenberger G (2002) Organic matter structure and characterization. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, New York, pp 929–935Google Scholar
  22. Guggenberger G, Frey SD, Six J, Paustian K, Elliott ET (1999) Bacterial and fungal cell-wall residues in conventional and no-tillage agroecosystems. Soil Sci Soc Am J 63:1188–1198CrossRefGoogle Scholar
  23. Haider K (1992) Problems related to the humification processes in soils of the temperate climate. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol 7. Marcel Dekker, New York, pp 55–94Google Scholar
  24. Haider K, Martin JP (1975) Decomposition of specifically carbon-14 labelled benzoic and cinnamic acid derivatives in soil. Soil Sci Soc Am Proc 39:657–662CrossRefGoogle Scholar
  25. Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Org Geochem 35: 823–830CrossRefGoogle Scholar
  26. Harborne JB (1997) Role of phenolic secondary metabolites in plants and their degradation in nature. In: Cadisch G, Giller KE (eds) Driven by nature: Plant litter quality and decomposition. CAB International, Wallingford, pp 67–74Google Scholar
  27. Haumaier L, Zech W (1995) Black carbon — possible source of highly aromatic components of soil humic acids. Org Geochem 23: 191–196CrossRefGoogle Scholar
  28. Hayes MHB, MacCarthy P, Malcolm R, Swift RS (1989) Humic substances II. In search of structure. Wiley-Interscience, ChichesterGoogle Scholar
  29. Hedges JI (1978) The formation and clay mineral reactions of melanoidins. Geochim Cosmochim Acta 42:69–76CrossRefGoogle Scholar
  30. Hedges JI (1988) Polymerization of humic substances in natural environments. In: Frimmel FH, Christman, RF (eds) Humic substances and their role in the environment. Wiley, Chichester, pp 45–58Google Scholar
  31. Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly uncharacterized component of nonliving organic matter in natural environment. Org Geochem 31:945–958CrossRefGoogle Scholar
  32. Herring JR (1985) Charcoal fluxes into sediments of the North Pacific Ocean: The cenozoic record of burning. Geophys Monogr 32:419–442Google Scholar
  33. Kirk TK, Farrel RL (1987) Enzymatic combustions — the microbial degradation of lignin. Annu Rev Microbiol 41:465–505CrossRefGoogle Scholar
  34. Knicker H (2000) Biogenic nitrogen in soils as revealed by solid-state carbon-13 and nitrogen-15 nuclear magnetic resonance spectroscopy. J Environ Qual 29:715–723CrossRefGoogle Scholar
  35. Knicker H, Hatcher PG (1997) Survival of protein in an organic-rich sediment — possible protection by encapsulation in organic matter. Naturwissenschaften 84:231–234CrossRefGoogle Scholar
  36. Knicker H, Hatcher PG (2001) Sequestration of organic nitrogen in the sapropel from Mangrove Lake, Bermuda. Org Geochem 32:733–744Google Scholar
  37. Knicker H, Scaroni AW, Hatcher PG (1996) 13C and 15N NMR spectroscopic investigation on the formation of fossil algal residues. Org Geochem 24:661–669CrossRefGoogle Scholar
  38. Kögel-Knabner I (1993) Biodegradation and humification processes in forst soils. In: Bollag J-M, Stotzky G (eds) Soil biochemistry, vol 8. Marcel Dekker, New York, pp 101–137Google Scholar
  39. Kögel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31:609–625Google Scholar
  40. Kögel-Knabner I (2002) The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol Biochem 34:139–162Google Scholar
  41. Khanna M, Yoder M, Calamai L, Stotzky G (1998) X-ray diffractometry and electron microscopy of DNA from Bacillus subtilis bound on clay minerals. Sci Soils 3:1CrossRefGoogle Scholar
  42. Kuhlbusch TAJ, Crutzen PJ (1995) Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2. Global Biogeochem Cycles 9: 491–501CrossRefGoogle Scholar
  43. Largeau C, Derenne S, Casadevall E, Kadouri A, Sellier N (1986) Pyrolysis of immature torbanite and of the resistant biopolymer (PRB A) from extant algae Botryoccus braunii; mechanism of formation and structure of torbanite. Org Geochem 10:1023–1032CrossRefGoogle Scholar
  44. Luis P, Walther G, Buscot F (2004) Diversity of laccase gene from basidiomycetes in a forest soil. Soil Biol Biochem 36:1025–1036CrossRefGoogle Scholar
  45. Madigan MT, Martinko JM, Parker J (1997) Brock — Biology of microorganisms. 8th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  46. Martin JP, Haider K (1986) Influence of mineral colloids on turnover rates of soil organic carbon. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes, Vol 17. Soil Science Society of America, Madison, pp 283–304Google Scholar
  47. Möller A, Kaiser K, Amelung W, Niamskul C, Udomsri S, Puthawong M, Haumaier L, Zech W (2000) Forms of organic C and P extracted from tropical soils as assessed by liquid-state 13C-and 31P NMR spectroscopy. Aust J Soil Res 38:1017–1035Google Scholar
  48. Nagata T, Kirchman DL (1996) Bacterial degradation of protein adsorbed to model submicron particles in seawater. Mar Ecol Prog Ser 132: 241–248Google Scholar
  49. Oades JM (1989) An introduction to organic matter in mineral soils. In: Dixon JB, Weed SB (eds) Minerals in soil environments, 2nd ed. Soil Science Society of America, Madison, pp 89–159Google Scholar
  50. Ogren JA, Charlson RJ (1983) Elemental carbon in the atmosphere: cycle and lifetime. Tellus 35:241–254Google Scholar
  51. Olah G-M, Reisinger O, Kilbertus G (1978) Biodégradation et humification. Atlas ultrastructural. Presses de l’úniversité Laval, QuebecGoogle Scholar
  52. Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, San DiegoGoogle Scholar
  53. Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134Google Scholar
  54. Preston CM (1996) Applications of NMR to soil organic matter analysis: history and prospects. Soil Sci 161:144–166CrossRefGoogle Scholar
  55. Saiz-Jimenez C (1996) The chemical structure of humic substances: recent advances. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 1–44Google Scholar
  56. Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34: 251–271CrossRefGoogle Scholar
  57. Sommers LE, Gilmour CM, Wildung RE, Beck SM (1981) The effect of water potential on decomposition processes in soils. In: Parr JF, Garnder WR, Elliott LF (ed) Water potential relations in soil microbiology. Soil Science Society of America Special Publication 9, Madison, pp 97–117Google Scholar
  58. Stevenson FJ (1994) Humus chemistry. Genesis, composition, reactions. 2nd edn. Wiley, New YorkGoogle Scholar
  59. Stotzky G, Gallori E, Khanna M (1996) Transformation in soil. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds.) Molecular microbial ecology manual. Kluwer, Dordrecht, pp 1–28Google Scholar
  60. Swift RS (2001) Sequestration of carbon by soil. Soil Sci 166: 858–971CrossRefGoogle Scholar
  61. Tegelaar EW, de Leeuw JW, Saiz-Jimenez C (1989) Possible origin of aliphatic moieties in humic substances. Sci Total Environ 81/82: 1–17CrossRefGoogle Scholar
  62. Wolters V (2000) Invertebrate control of soil organic matter stability. Biol Fertil Soils 31:1–19CrossRefGoogle Scholar
  63. Zech W, Kögel-Knabner I (1994) Patterns and regulation of organic matter transformation in soils: litter decomposition and humification. In: Schulze ED (ed) Flux control in biological systems: from the enzyme to the population and ecosystem level. Academic Press, New York, pp 303–334Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Georg Guggenberger
    • 1
  1. 1.Institute of Soil Science and Plant NutritionMartin Luther University Halle-WittenbergHalleGermany

Personalised recommendations