Skip to main content

Role of Microorganisms in Wear Down of Rocks and Minerals

  • Chapter

Part of the book series: Soil Biology ((SOILBIOL,volume 3))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aardema BW, Lorenz M, Krumbein WE (1983) Protection of sediment adsorbed transforming DNA against enzymatic inactivation. Appl Environ Microbiol 46:417–420

    CAS  Google Scholar 

  • Anderson DL (1984) The Earth as a planet: paradigms and paradoxes. Science 223:347–354

    CAS  Google Scholar 

  • Arrhenius SA (1896) On the influence of carbonic acid in the air upon the temperature of the ground. Philos Mag 41:237–276

    Google Scholar 

  • Bachmann E (1890) Die Beziehung der Kalkflechten zu ihrem Substrat. Ber Dtsch Bot Ges 8:141–145

    Google Scholar 

  • Bachmann E (1916) Ein kalklösender Pilz. Ber Dtsch Bot Ges 34:528–539

    Google Scholar 

  • Banfield JF, Barker WW, Welch SA, Taunton, A. (1999) Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Nat Acad Sci USA 96: 3403–3411

    Article  Google Scholar 

  • Barnola JM, Raynaud D, Korotkevich YS, Lorius C (1987) Vostok ice core provides a 160,000-year record of atmospheric CO2. Nature 329: 408–414

    Article  CAS  Google Scholar 

  • Berner RA (1992) Weathering, plants, and long-term carbon cycle. Geochim Cosmochim Acta 56:3225–3231

    CAS  Google Scholar 

  • Boden TA, Kanciruk P, Farrel MP (1990) Trends’ 90 — a compendium of data on global change. Oak Ridge, Tennessee, 257 pp

    Google Scholar 

  • Buffon GL (1749-1804) Histoire naturelle, générale et particulière, 44 volumes. Paris Imprimerie royale, after the revolution, Plassan, Paris

    Google Scholar 

  • Callendar GS (1938) The artificial production of carbon dioxide and its influence on temperature. Q J R Metereol Soc 64:223–240

    Google Scholar 

  • Callendar GS (1939) The composition of the atmosphere through the ages. Metereol Mag 74:33–39

    Google Scholar 

  • Callendar GS (1958) On the measurement of carbon dioxide in the atmosphere. Tellus 10:241–248

    Article  Google Scholar 

  • D’Arcy Thompson W (1917, 1961) On growth and form. Cambridge Univ Press, Cambridge, 346 pp

    Google Scholar 

  • Degens E (1989) Perspectives on biogeochemistry. Springer, Berlin Heidelberg New York, 423 pp

    Google Scholar 

  • Dietler G, Zhang YC (1992) Fractal aspects of the Swiss landscape. Physica A 191:213–219

    Article  Google Scholar 

  • Dornieden T, Gorbushina AA, Krumbein WE (1997) Änderungen der physikalischen Eigenschaften von Marmor durch Pilzbewuchs. Int J Restor Build Monu 3:441–456

    Google Scholar 

  • Dornieden T, Gorbushina AA, Krumbein WE (2000) Biodecay of mural paintings and stone monuments as a space/time related ecological situation — an evaluation of a series of studies. Int Biodeter Biodegrad 46:261–270

    CAS  Google Scholar 

  • Etienne S, Dupont J (2002) Fungal weathering of basaltic rocks in a cold oceanic environment (Iceland): comparison between experimental and field observations. Earth Surface Proc Landforms 27:737–748

    Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid. In: Poole RK (ed) Advances in microbial physiology. Academic Press, New York, pp 48–92

    Google Scholar 

  • Gehrmann C, Krumbein WE, Petersen K (1988) Lichen weathering activities on mineral and rock surfaces. Stud Geobotan 8:33–45

    Google Scholar 

  • Golubic S, Krumbein WE, Schneider J (1979) The carbon cycle. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam, pp 29–45

    Google Scholar 

  • Gonzalez-del Valle M, Dorronsoro C, Irastorza A, Duenas M, Velasco S, Ibarburu I, Saiz-Jimenez C (2003) Microbial communities in black crusts. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Balkema, Lisse, pp 219–223

    Google Scholar 

  • Gorbushina AA, Krumbein WE (1999) The poikilotrophic micro-organism and its environment — microbial strategies of establishment, growth and survival. In: Seckbach J (ed) Enigmatic micro-organisms and life in extreme environments. Kluwer, Dordrecht, pp 175–185

    Google Scholar 

  • Gorbushina AA, Krumbein WE (2000) Subaerial biofilms and their effects on soil and rock. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 161–170

    Google Scholar 

  • Gorbushina AA, Krumbein WE, Vlasov D (1996) Biocarst cycles on monument surfaces. In: Pancella R (ed) Preservation and restoration of cultural heritage. Proceedings of the 1995 LPC Congress. EPFL, Lausanne, pp 319–332

    Google Scholar 

  • Gorbushina AA, Boettcher M, Brumsack HJ, Krumbein WE, Vendrell-Saz M (2001) Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (tepuis) of Venezuela. Geomicrobiol J 18:117–132

    CAS  Google Scholar 

  • Gorbushina AA, Diakumaku E, Müller L, Krumbein WE (2003a) Biocide treatment of rock and mural paintings. Problems of application, molecular techniques of control and environmental hazards. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Swets and Zeitlinger, Lisse, pp 61–72

    Google Scholar 

  • Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges J (2003b) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock dwelling microcolonial fungi. Can J Bot 81: 131–138

    Article  CAS  Google Scholar 

  • Gorbushina AA, Brehm U, Mottershead D (2004) The role of microorganisms and biofilms in quartz weathering. Paleoecol Paleoclimatol Paleooceanograph (in press)

    Google Scholar 

  • Gumilev L (1990) Ethnogenesis and the biosphere. Progress Publ, Moskwa, 382 pp

    Google Scholar 

  • Hansen JP, Skjeltorp AT (1988) Fractal pore space and rock permeability implications. Physical Rev B 38:2635–2638

    Google Scholar 

  • Herder JG (1784) Ideen zur Philosophie der Geschichte der Menschheit. Hempel, Berlin

    Google Scholar 

  • Hutton J (1795) Theory of the earth. Edinburgh, I. 620 pp, II. 567 pp

    Google Scholar 

  • Isacenko B (1936) Sur la corrosion du béton. Dokl Akad Nauk SSSR 2:288–289

    Google Scholar 

  • Jongmans AG, van Breemen N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerud PA, Olsson M (1997) Rock eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Kant I (1747) Gedanken von der wahren Schätzung der lebendigen Kräfte und Beurtheilung der Beweise, deren sich Herr von Leibniz und andere Mechaniker in der Streitsache bedient haben, nebst einigen vorhergehenden Betrachtungen, welche die Kraft der Körper überhaupt betreffen. In: Königl. Preuss Akad d Wiss (Hrsg) Kants gesammelte Schriften, Bd 1. Reimer, Berlin, 1910, pp 1–181

    Google Scholar 

  • Kant I (1754) Untersuchung der Frage, ob die Erde in ihrer Umdrehung um die Achse, wodurch sie die Abwechslung des Tages und der Nacht hervorbringt, einige Veränderung seit den ersten Zeiten ihres Ursprungs erlitten habe und woraus man sich ihrer versichern könne, welche von der königl. Akad d Wissenschaften zu Berlin zum Preise für das laufende Jahr aufgegeben worden. In: Königl Preuss Akad d Wiss (Hrsg) Kants gesammelte Schriften, Bd 1. Reimer, Berlin, 1910, pp 183–213

    Google Scholar 

  • Kant I (1755) Allgemeine Naturgeschichte und Theorie des Himmels. oder der Versuch von der Verfassung und dem mechanischen Ursprunge des ganzen Weltgebäudes nach Newtonischen Grundsätzen abgehandelt. Kants vorkritische Schriften, 1968. Suhrkamp, Frankfurt/Main, pp 227–400

    Google Scholar 

  • Kant I (1756a) Geschichte und Naturbeschreibung der merkwürdigsten Vorfälle des Erdbebens, welches am Ende des 1755sten Jahres einen großen Theil der Erde erschüttert hat. In: Königl Preuss Akad d Wiss (Hrsg) Kants gesammelte Schriften, Bd 1. Reimer, Berlin, 1910, pp 431–461

    Google Scholar 

  • Kant I (1756b) Von den Ursachen der Erderschütterungen bei Gelegenheit des Unglücks, welches die westlichen Länder von Europa gegen das Ende des vorigen Jahres betroffen hat. In: Königl Preuss Akad d Wiss (Hrsg) Kants gesammelte Schriften, Bd 1. Reimer, Berlin, 1910, pp 417–427

    Google Scholar 

  • Keller WD (1957) The principles of chemical weathering. Lucas Brothers, Columbia, Missouri, 111 pp

    Google Scholar 

  • Krohn CE (1988) Fractal measurements of sandstones, shales, and carbonates. J Geophys Res 93B4:3297–3305

    Google Scholar 

  • Krumbein WE (1966) Zur Frage der Gesteinsverwitterung (Über geochemische und mikrobiologische Bereiche der exogenen Dynamik) PhD Thesis, Würzburg, 103 pp

    Google Scholar 

  • Krumbein WE (1969) Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung). Geol Rundsch 58:333–363

    CAS  Google Scholar 

  • Krumbein WE (1972) Rôle des microorganismes dans la genèse, la diagenèse et la dégradation des roches en place. Rev Ecol Biol Sol 9:283–319

    CAS  Google Scholar 

  • Krumbein WE (1983) Introduction. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 1–4

    Google Scholar 

  • Krumbein WE (1988) Biotransfer in monuments — a sociobiological study. Durabil Building Mater 5:359–382

    CAS  Google Scholar 

  • Krumbein WE (1990) Der Atem Cäsars. Mitt Geol Paläontol Inst Hamburg 69:267–301

    Google Scholar 

  • Krumbein WE (1993) Microbial biogeomorphogenesis — an appraisal of Immanuel Kant. In: Guerrero R, Pedros-Alio C (eds) Trends in microbial ecology. Spanish Soc Microbiol, Barcelona, pp 483–488

    Google Scholar 

  • Krumbein WE (1996) Geophysiology and parahistology of the interactions of organisms with the environment. Mar Ecol 17:1–21

    CAS  Google Scholar 

  • Krumbein WE (1998) Mikrobenbefall und Steinzerstörung: autotroph oder heterotroph? chemisch oder physikalisch? Strategien der Verhinderung und Behebung — eine Bilanz. In: Snethlage R (ed) Denkmalpflege und Naturwissenschaft. Natursteinkonservierung II. Fraunhofer IRB, Stuttgart, pp 173–205

    Google Scholar 

  • Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev Desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50:25–38

    Article  Google Scholar 

  • Krumbein WE, Dyer B (1985) This planet is alive — weathering and biology, a multi-faceted problem. In: Drever JI (ed) The chemistry of weathering, vol 149. Reidel, Dordrecht, pp 143–160

    Google Scholar 

  • Krumbein WE, Schellnhuber HJ (1990) Geophysiology of carbonates as a function of bioplanets. In: Ittekott VI, Kempe S, Michaelis W, Spitzy A (eds) Facets of modern biogeochemistry, chap 2. Springer, Berlin Heidelberg New York, pp 5–22

    Google Scholar 

  • Krumbein WE, Schellnhuber HJ (1992) Geophysiology of mineral deposits — a model for a biological driving force of global changes through Earth history. Terra Nova 4:351–362

    Google Scholar 

  • Krumbein WE, Swart P (1983) The microbial carbon cycle. In: Krumbein WE (ed) Microbial geochemistry. Blackwell, Oxford, pp 5–62

    Google Scholar 

  • Krumbein WE, Urzì CE (1993) Biodeterioration processes of monuments as a part of (manmade?) global climate change. In: Thiel MJ (ed) Conservation of stone and other materials. E & FN Spon, Chapman and Hall, London, pp 558–564

    Google Scholar 

  • Krumbein WE, Gorbushina AA (1996) Organic pollution and rock decay. In: Pancella R (ed) Preservation and restoration of cultural heritage. Proceedings of the 1995 LPC Congress. EPFL, Lausanne, pp 277–284

    Google Scholar 

  • Krumbein WE, Brehm U, Gerdes G, Gorbushina AA, Levit G, Palinska KA (2003a) Biofilm, Biodictyon, Biomat — Microbialites, oolites, stromatolites — geophysiology, global mechanism, parahistology. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms, a natural history of life on earth. Kluwer, Dordrecht, 495 pp

    Google Scholar 

  • Krumbein WE, Paterson DM, Zavarzin GA (eds) (2003b) Fossil and recent biofilms, a natural history of life on earth. Kluwer, Dordrecht, 495 pp

    Google Scholar 

  • Levit G, Krumbein WE (2001) Eine vergessene Seite der Ökologiegeschichte: die Biosphäre als Morphoprozess in der Theorie von V. N. Beklemishev (1890-1962). Ber Gesch Theor Ökol 7:199–214

    Google Scholar 

  • Leyval C, Berthelin J (1991) Weathering of mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55: 1009–1016

    Article  CAS  Google Scholar 

  • Li YH (1972) Geochemical mass balance among lithosphere, hydrosphere, and atmosphere. Am J Sci 272:119–137

    Article  CAS  Google Scholar 

  • Lovelock JE (1979) Gaia — a new look at life on earth. Oxford Univ Press, Oxford, 157 pp

    Google Scholar 

  • Mandelbrot BB (1967) How long is the coast of Britain? Statistical self-similarity and fractal dimension. Science 156:636–638

    CAS  Google Scholar 

  • Milankovitch M (1920) Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Gauthier-Villars, Paris, 339 pp

    Google Scholar 

  • Mottershead D, Gorbushina AA, Lucas G, Wright J (2003) The influence of marine salts, aspect and microbes in the weathering of sandstone in two historic structures. Building Environ 38:1193–1204

    Google Scholar 

  • Müntz A (1890) Sur la decomposition des roches et la formation de la terre arable. CR Acad Sci 110:1370–1372

    Google Scholar 

  • Paine SG, Lingood FV, Schimmer F, Thrupp TC (1933) The relation of micro-organisms to the decay of building stones. Philos Trans R Soc B 222:97–127

    Google Scholar 

  • Perry RS (1979) Chemistry and structure of desert varnish. Ms. Sc. Thesis, Univ Washington, Seattle

    Google Scholar 

  • Paterson D (1993) Did Tibet cool the world? New Sci 1880: 29–33

    Google Scholar 

  • Saiz-Jimenez C (1999) Biogeochemistry of weathering processes in monuments. Geomicrobiol J 16:27–37

    CAS  Google Scholar 

  • Schoeller H (1955) Géochimie des eaux souterraines. Rev Inst Fr Pétrol 1955:181–213

    Google Scholar 

  • Schwartzman DW, Volk T (1990) Biotic enhancement of weathering and the habitability of earth. Nature 340:457–460

    Google Scholar 

  • Schwartzman DW, Volk T (1991a) Biotic enhancement of weathering and surface temperatures on earth since the origin of life. Palaeoecology (Global and Planetary Change Section) 90:357–371

    Google Scholar 

  • Schwartzman DW, Volk T (1991b) When soil cooled the world. New Sci 51:33–36

    Google Scholar 

  • Sollas WJ (1880) On the action of a lichen on a limestone. Report, British Association for the Advancement of Science, 586 pp

    Google Scholar 

  • Staley JT, Palmer FE, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095

    CAS  Google Scholar 

  • Sterflinger K (2000) Fungi as geological agents. Geomicrobiol J 17:97–124

    Article  CAS  Google Scholar 

  • Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J 14:219–230

    Article  Google Scholar 

  • Tetsuro W (Japanese 1935, German 1992) Fudo — Wind und Erde. Der Zusammenhang zwischen Klima und Kultur. Wiss Buchgesellschaft, Darmstadt, 216 pp

    Google Scholar 

  • Turcotte DL (1989) Fractals in geology and geophysics. Pageoph 131:171–196

    Article  Google Scholar 

  • Vernadsky VI (1924) La géochimie. Alcan, Paris

    Google Scholar 

  • Vernadsky VI (1929) La biosphère. Alcan, Paris, 232 pp

    Google Scholar 

  • Vernadsky VI (1930) Geochemie in ausgewählten Kapiteln. Akad Verlagsgesellschaft, Leipzig, 370 pp

    Google Scholar 

  • Vernadsky VI (1944) Problems of biogeochemistry II. Trans Connect Acad Arts Sci 35:483–517

    Google Scholar 

  • Vernadsky VI (1997) The biosphere. Springer, Berlin Heidelberg New York, 192 pp

    Google Scholar 

  • Viles HA (1984) Biokarst. Review and prospect. Prog Phys Geogr 8:532–542

    Google Scholar 

  • Von Bloh W, Franck S, Bounama C, Schellnhuber H-J (2003) Biogenic enhancement of weathering and the stability of the ecosphere. Geomic J 20(5):501–512

    Google Scholar 

  • Walker JCG (1993) Biogeochemical cycles of carbon on a hierarchy of time scales. In: Oremland RS (ed) Biogeochemistry of global change. Chapman and Hall, New York, pp 3–28

    Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9(1):25–32

    Article  CAS  Google Scholar 

  • Wang FX, Junfa CJ, Jing JLHJW (1993) Biocarst. Geological Publication House, Beijing, 130 pp

    Google Scholar 

  • Warscheid T, Oelting M, Krumbein WE (1991) Physico-chemical aspects of biodeterioration processes on rocks with special regard to organic pollutants. Int Biodeter 28:37–48

    Article  CAS  Google Scholar 

  • Wong PZ, Howard J (1986) Surface roughening and the fractal nature of rocks. Phys Rev Lett 57:637–641

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gorbushina, A.A., Krumbein, W. (2005). Role of Microorganisms in Wear Down of Rocks and Minerals. In: Varma, A., Buscot, F. (eds) Microorganisms in Soils: Roles in Genesis and Functions. Soil Biology, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26609-7_3

Download citation

Publish with us

Policies and ethics