Skip to main content
Book cover

Geophysik pp 71–387Cite as

Geoelektrik

  • Chapter
  • 5299 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Archie, G. E. (1942): The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min., Met. & Petr. Eng., 146, 54–62.

    Google Scholar 

  • Beblo, M., Berktold, A., Schopper, J. R. & Haak, V. (1982): Elektrische Eigenschaften. In: Angenheister, G. (Hrsg.) Landolt — Börnstein: Zahlenwerte und Funktionen aus Naturwissenschaften und Technik. Neue Serie V, 1b, 239–307, Springer Berlin.

    Google Scholar 

  • Berg, C. R. (1995): A simple, effective medium model for water saturation in porous rocks. Geophysics, 60, 1070–1080.

    Article  Google Scholar 

  • Börner, F., Gruhne, M. & Schön, J. (1993): Contamination indications derived from electrical properties in the low frequency range. Geophys. Prosp., 41, 83–98.

    Google Scholar 

  • Bruggemann, D. A. G (1935): Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen (Teil I). Annalen der Physik, 24, 636–679.

    Google Scholar 

  • Bussian, A. E. (1983): Electrical conductance in a porous medium. Geophysics, 48, 1258–1268.

    Article  Google Scholar 

  • Carcione, J. M. & Seriani, G. (2000): An electromagnetic modelling tool for the detection of hydrocarbons in the subsoil. Geophys. Prosp., 48, 231–256.

    Google Scholar 

  • Collett, L. S. & Katsube, T. J (1973): Electrical parameters of rocks in developing geophysical techniques. Geophysics, 38, 76–91.

    Article  Google Scholar 

  • Hanai, T. (1960): Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. Kolloid-Zeitschrift, 171, 23–31.

    Article  Google Scholar 

  • Hashin, Z. & Shtrikman, S. (1962): A variational approach to the theory of the effective magnetic permeability of multiphase materials. J. Appl. Phys. 33, 3125–3131.

    Article  Google Scholar 

  • Jödicke, H. (1991): Zonen hoher elektrischer Krustenleitfähigkeit im Rhenoherzynikum und seinem nördlichen Vorland. Hochschulschriften, 24, Lit. Verlag, Münster, Hamburg.

    Google Scholar 

  • Keller, G. V. & Frischknecht, F. C. (1966): Electrical methods in geophysical prospecting. Pergamon Press, Oxford.

    Google Scholar 

  • Lorrain, P., Corson, D. R. & Lorrain, F. (1988): Electromagnetic fields and waves, 3rd edn. W. H. Freeman and Company, New York.

    Google Scholar 

  • Mahrer, K. D. (1995): Review of the radio frequency (RIM) method and its utilization in near-surface investigations. The Leading Edge, 14, 249–256.

    Article  Google Scholar 

  • Maillet, R. (1947): The fundamental equations of electrical prospecting. Geophysics, 12, 529–556.

    Article  Google Scholar 

  • Mauersberger, P. (1964): Geomagnetismus und Aeronomie. I/1 (Hrsg. Fanselau, G.): Theorie der elektromagnetischen Felder. VEB Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Mavko, G., Mukerji, T. & Dvorkin, J. (1998): The rock physics handbook. Cambridge University Press.

    Google Scholar 

  • Militzer, H. & Weber, F. (1985): Angewandte Geophysik, 2: Geoelektrik-Geothermik-Radiometrie-Aerogeophysik. Springer Wien, Akademie-Verlag Berlin.

    Google Scholar 

  • Olhoeft, G. R. (1985a): Low-frequency electrical properties. Geophysics, 50, 2492–2503.

    Article  Google Scholar 

  • Olhoeft, G. R. (1985b): Electrical properties of rocks and minerals. Short Course Notes Golden, Colorado.

    Google Scholar 

  • Parasnis, D. S. (1986): Principles of applied geophysics (4th edn.). Chapman and Hall, London.

    Google Scholar 

  • Ruffet, C., Gueguen, Y. & Darot, M. (1991): Complex conductivity measurements and fractal nature of porosity. Geophysics, 56, 758–768.

    Article  Google Scholar 

  • Schön, J. (1983): Petrophysik. Physikalische Eigenschaften von Gesteinen und Mineralen, Enke, Stuttgart.

    Google Scholar 

  • Schön, J. (1996): Physical Properties of Rocks, Handbook of Geophysical Exploration. Pergamon Press.

    Google Scholar 

  • Seabrook, B. C. & Boadu, F. K. (2002): Relating electrical response and petrophysical properties of sands subjected to stress changes. JEEG, 7, 88–99.

    Google Scholar 

  • Sen, P. N., Scala, C. & Cohen, M. H. (1981): A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics, 46, 781–795.

    Article  Google Scholar 

  • Sharma, S. P. & Kaikkonen, P. (1999): Appraisal of equivalence and suppression problems in 1D EM and DC measurements using global optimization and joint inversion. Geophys. Prosp., 47, 219–249.

    Article  Google Scholar 

  • Shuey, R. T. & Johnson, M. (1973): On the phenomenology of electrical relaxation in rocks. Geophysics, 38, 37–48.

    Article  Google Scholar 

  • Spies, B. R. & Eggers, D. E. (1986): The use and misuse of apparent resistivity in electromagnetic methods. Geophysics, 51, 1462–1471.

    Article  Google Scholar 

  • Spies, B. R. & Frischknecht, F. C. (1991): Electromagnetic sounding. In: Nabighian, M. N. (ed.): Electromagnetic methods in applied geophysics — applications, 2, Part A, Society of Exploration Geophysicists, Tulsa, 285–425.

    Google Scholar 

  • Telford, W. M., Geldart, L. P. & Sheriff, R. E. (1990): Applied geophysics, (2nd edn.). Cambridge University Press, Cambridge.

    Google Scholar 

  • Tripp, A. C., Cherkaeva, E. & Hulen, J. (1998): Bounds on the complex conductivity of geophysical mixtures. Geophys. Prosp., 46, 589–601.

    Article  Google Scholar 

  • Waxman, M. H. & Smits, L. J. M. (1968): Electrical conductivities in oil-bearing shaly sands. Trans. Am. Inst. Min., Met. & Petr. Eng., 243, 107–122.

    Google Scholar 

  • West, G. F. & Macnae, J. C. (1991): Physics of the electromagnetic induction exploration method. In: Nabighian, M. N. (ed.) Electromagnetic methods in applied geophysics — applications, 2, Part A, Society of Exploration Geophysicists, Tulsa, 5–45.

    Google Scholar 

  • Bigalke, J. & Grabner, E. W. (1997): The Geobattery model: A contribution to large scale electrochemistry. Electrochimica Acta, 42, 3443–3452.

    Article  Google Scholar 

  • Corwin, R. F. (1989): Data quality for engineering self-potential surveys. In: Lecture Notes in Earth Sciences, 27, Merkler, G. P., Militzer, H., Hötzl, H., Armbruster, H. & Brauns, J. (eds.): Detection of Subsurface Flow-Phenomena. Springer, Berlin Heidelberg New York Tokyo, 51–72.

    Google Scholar 

  • Corwin, R. F. (1990): The self-potential method for environmental and engineering applications. In: Ward S. H. (ed.): Geotechnical and Environmental Geophysics, I, Review and Tutorial. Society of Exploration Geophysicists, Tulsa, Oklahoma, 127–145.

    Google Scholar 

  • Cull, J. P. (1985): Self potential and current channeling. Geophys. Prosp., 33, 460–467.

    Google Scholar 

  • Ernstson, K. & Scherer, H. U. (1986): Self-potential variations with time and their relation to hydrogeologic and meteorological parameters. Geophysics, 51, 1967–1977.

    Article  Google Scholar 

  • Fitterman, D. V. (1976): Calculation of self-potential anomalies generated by Eh potential gradients. U. S. Geological Survey, Open File Report, 76–98.

    Google Scholar 

  • Fitterman, D. V. (1979): Calculations of self-potential anomalies near vertical contacts. Geophysics, 44, 195–205.

    Article  Google Scholar 

  • GECO-PRAKLA (1993): Bericht über Eigenpotentialmessungen nach dem Soilscan-Verfahren im Umfeld einer Sonderabfalldeponie. Hannover, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Geophysik GGD (1993): Ergebnisbericht der Erkundung des Altstandortes Hermsdorf/Thüringen. Leipzig, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Haalck, H. (1958): Lehrbuch der angewandten Geophysik, Teil II. Bornträger, Berlin.

    Google Scholar 

  • Hämmann, M., Maurer, H. R., Green, A. G. & Horstmeyer, H. (1997): Self-Potential Image Reconstruction: Capabilities and Limitations. JEEG, 2, 21–35.

    Google Scholar 

  • Hatzsch, P. (1994): Bohrlochmessungen. Enke, Stuttgart.

    Google Scholar 

  • Helmholtz, H. V. (1879): Studien über elektrische Grenzschichten. Ann. Phys. (3), 7, 337–382.

    Google Scholar 

  • Hollinderbäumer, J. (1991): Zur Ortung von Kohlenwasserstofflagerstätten mit Hilfe der Eigenpotentialmethode. Erdöl Erdgas Kohle, 107,3, 105–109.

    Google Scholar 

  • Hölting, B. (1989): Hydrogeologie. Einführung in die Allgemeine und Angewandte Hydrogeologie. 3. Aufl. Enke, Stuttgart.

    Google Scholar 

  • Hoogervorst, G. H. T. C. (1975): Fundamental noise affecting signal-to-noise ratio of resistivity surveys. Geophys. Prosp., 23, 380–390.

    Google Scholar 

  • Kawakami, N. & Takasugi, S. (1994): SP-monitoring during the hydraulic fracturing using the TG-2 Well. 56th Meeting, European Association of Exploration Geophysicists, Extended Abstracts, Paper 1044.

    Google Scholar 

  • Matthess, G. (1990): Lehrbuch der Hydrogeologie, 2. Die Beschaffenheit des Grundwassers. Bornträger, Berlin.

    Google Scholar 

  • Merkler, G. P. & Hötzl, H. (1989): Model experiments on a small test channel. Empirical correlations between flow potentials and the hydraulic field. In: Lecture Notes in Earth Sciences, 27, Merkler, G. P. et al. (eds.): Detection of subsurface flow-phenomena. Springer, Berlin Heidelberg New York Tokyo, 197–210.

    Google Scholar 

  • Meiser, P. (1985): Eigenpotentialmessungen. In: Bender, F. (Hrsg.): Angewandte Geowissenschaften, II, Methoden der Angewandten Geophysik und mathematische Verfahren in den Geowissenschaften. Enke, Stuttgart, 421–428.

    Google Scholar 

  • Militzer, H. & Weber, F. (1985): Angewandte Geophysik, 2, Geoelektrik, Geothermik, Radiometrie, Aerogeophysik. Springer, Wien; Akademie, Berlin.

    Google Scholar 

  • Morgan, F. D. (1989): Fundamentals of streaming potentials in geophysics: laboratory methods. In: Lecture Notes in Earth Sciences, 27, Merkler, G. P. et al., (eds.): Detection of subsurface flow-phenomena. Springer, Berlin Heidelberg New York Tokyo, 133–144.

    Google Scholar 

  • Nourbehecht, B. (1963): Irreversible thermodynamic effects in inhomogeneous media and their applications in certain geoelectric problems, Ph. D. Thesis, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Nyquist J. E. & Corry, Ch. E. (2002): Self-potential: The ugly duckling of environmental geophysics. The Leading Edge, 446–451.

    Google Scholar 

  • Ogilvy, A. A., Ostrovskij, E. J. & Ruderman, E. N. (1989): Electrical surveys using the method of the natural electrical field; new investigations. In: Lecture Notes in Earth Sciences, 27, Merkler, G. P. et al., (eds.): Detection of subsurface flow-phenomena. Springer, Berlin Heidelberg New York Tokyo, 401–462.

    Google Scholar 

  • Ortiz, I., Vongonten, W. D. & Osoba, J. S. (1972): Relationship of the electrochemical potential of porous media with hydrocarbon saturation. Proc. SPWLA 13th Annual Logging Symposium, May 7–10.

    Google Scholar 

  • Parasnis, D. S. (1986): Principles of applied geophysics, 4th edn. Chapman and Hall, London.

    Google Scholar 

  • Patella, D. (1997): Introduction to ground surface self-potential tomography. Geophys. Prosp., 45, 653–681.

    Article  Google Scholar 

  • Pretzschner, C., Börner, R.-U., Gbodogbe, J.-C., Käppler, R., Lindner, H., Vogt, R., & Wagenbreth, B. (1993): Erkundungsarbeiten am Teststandort Hermsdorf/Thüringen. TU Bergakademie Freiberg, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Quarto, R. & Schiavone, D. (1996): Detection of cavities by the self-potential method. First Break, 14, 419–431.

    Google Scholar 

  • Sato, M. Mooney, H. M. (1960): The electrochemical mechanism of sulphide self potentials. Geophysics, 25, 226–249.

    Article  Google Scholar 

  • Sill, W. R. (1983): Self-potential modeling from primary flows. Geophysics, 48, 76–86.

    Article  Google Scholar 

  • Sprunt, E. S. Mercer, T. B. & Djabbarah, N. F. (1994): Streaming potential from multiphase flow. Geophysics, 59, 707–711.

    Article  Google Scholar 

  • Vichabian, Y. & Morgan, F. D. (1999a): Self potentials in cave detection. SAGEEP, Conference Proceedings, 323–329.

    Google Scholar 

  • Vichabian, Y. & Morgan, F. D. (1999b): Self potential monitoring of jet fuel air sparging. SAGEEP, Conference Proceedings, 549–553.

    Google Scholar 

  • Vogelsang. D. (1993): Geophysik an Altlasten. Leitfaden für Ingenieure, Naturwissen-schaftler und Juristen. 2. erw. Aufl., Springer, Berlin Heidelberg New York Tokyo.

    Google Scholar 

  • Weigel, M. (1989): Self-potential surveys on waste dumps. Theory and practice. In: Lecture Notes in Earth Sciences, 27, Merkler, G. P. et al., (eds.): Detection of subsurface flow-phenomena. Springer, Berlin Heidelberg New York Tokyo 109–120.

    Google Scholar 

  • Wienberg, R. (1990): Zum Einfluß organischer Schadstoffe auf Deponietone, Teil 1: Unspezifische Interaktionen. AbfallwirtschaftsJournal 2, 222–230. Teil 2: Spezifische Interaktionen. AbfallwirtschaftsJournal 2, 393–403.

    Google Scholar 

  • Winter, H., Aulbach, E. & Stoll, J. (1989): Copper-copper sulfate electrodes for self-potential and magnetotelluric measurements. In: Lecture Notes in Earth Sciences, 27, Merkler, G. P. et al. (eds.): Detection of subsurface flow-phenomena, Springer, Berlin Heidelberg New York Tokyo, 145–146.

    Google Scholar 

  • Wilt, M. J. & Corwin, R. F. (1989): Numerical modeling of self-potential anomalies due to leaky dams: model and field examples. In: Lecture Notes in Earth Sciences, 27, MERKLER, G. P. et al., (eds.): Detection of subsurface flow-phenomena. Springer, Berlin Heidelberg New York Tokyo, 73–89.

    Google Scholar 

  • Wurmstich, B. & Morgan, F. D. (1994): Modeling of streaming potentials response caused by oil well pumping. Geophysics, 59, 46–56.

    Article  Google Scholar 

  • Yaramanci, U., Kulenkampff, J., Konsemüller, S. & Latuske, M. (1995): Untersuchung von Durchlässigkeits-und Speichereigenschaften von Fest-und Lockergesteinen für Kontaminanten in Hinblick auf petrophysikalische Struktureigenschaften. TU Clausthal, Inst. f. Geophysik. Im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Aaltonen, J. (2001) Seasonal resistivity variations in some different swedish soils. European Journal of Environmental and Engineering Geophysics, 6, 33–45.

    Google Scholar 

  • Anders, W. (1979): Zur Erkundung mittels geoelektrischer Potentiale und ihrer Ableitungen, angewandt auf die Tiefensondierung. Gerlands Beitr. Geophys., Leipzig 88, 4–6, 307–320, 415–428, 474–482.

    Google Scholar 

  • Apparao, A. (1991): Geoelectric profiling. Geoexploration, 27, 351–389.

    Article  Google Scholar 

  • Apparao, A., Gangadhara Rao, T., Sivarama Sastry, R., Subrahmanya Sarma, V. (1992): Depth of detection of buried conductive targets with different electrode arrays in resistivity prospecting. Geophys. Prosp., 40, 749–760.

    Google Scholar 

  • Banarje, B. & Sengupta, B. J. (1987): Transformation of dipolar, Wenner-and two-electrode curves to Schlumberger apparent resistivity sounding curves. Geophys. Prosp., 35, 445–453.

    Google Scholar 

  • Barker, R. D. (1981): The offset system of electrical resistivity sounding and its use with a multicore cable. Geophys. Prosp., 29, 128–143.

    Google Scholar 

  • Barker, R. D. (1989): Depth of investigation of collinear symmetrical four-electrode arrays. Geophysics, 54, 1031–1037.

    Article  Google Scholar 

  • Barker, R. D. (1992): A simple algorithm for electrical imaging of the subsurface. First Break, 10,2, 52–62.

    Google Scholar 

  • Basokur, A. T. (1999): Automated 1D interpretation of resistivity soundings by simultaneous use of the direct and iterative methods. Geophys. Prosp., 47, 149–177.

    Article  Google Scholar 

  • Beard, L. P. & Morgan, F. D. (1991): Assessment of 2D-resistivity structures using 1D-inversion. Geophysics, 56, 874–883.

    Article  Google Scholar 

  • Beard, L. P. & Tripp, A. C. (1995): Investigating the resolution of IP-arrays using inverse theory. Geophysics, 60, 1326–1341.

    Article  Google Scholar 

  • Bernabini, M., Brizzolari, E. & Piro, S. (1988): Improvement of signal-to-noise-ratio in resistivity profiles. Geophys. Prosp., 36, 559–570.

    Google Scholar 

  • Busby, J. P. (2000): The effectiveness of azimuthal apparent-resistivity measurements as a method for determining fracture strike orientations. Geophys. Prosp., 48, 677–695.

    Article  Google Scholar 

  • Chambers, J. E., Ogilvy, R. D., Kuras, O., Cripps, J. C. & Meldrum, P. I. (2002): 3D electrical imaging of known targets at a controlled environmental test site. Environmental Geology, 46, 690–704.

    Google Scholar 

  • Christensen, N. B. & Sorensen, K. (2001): Pulled array continuous electrical sounding with an additional inductive source: an experimental design study. Geophys. Prosp., 49, 241–254.

    Article  Google Scholar 

  • Dabas, M., Tabbagh, A. & Tabbagh, J. (1994): 3D-Inversion in subsurface electrical surveying-I. Theory. Geophys. J. Int., 119, 975–990.

    Google Scholar 

  • Dahlin, T. (1996): 2D-resistivity surveying for environmental and engineering applications. First Break, 14, 275–283.

    Google Scholar 

  • Dey, A. & Morrison, H. F. (1979a): Resistivity modelling for arbitrarily shaped two-dimensional structures. Geophys. Prosp., 27, 106–136.

    Google Scholar 

  • Dey, A. & Morrison, H. F. (1979b): Resistivity modelling for arbitrarily shaped three-dimensional structures. Geophysics, 44, 753–780.

    Article  Google Scholar 

  • Draskovits, P. & Simon, A. (1992): Application of geoelectric methods using buried electrodes in exploration. Geophys. Prosp., 40, 573–586.

    Google Scholar 

  • Edwards, L. S. (1977): A modified pseudosection for resistivity and induced polarisation. Geophysics, 42, 1020–1036.

    Article  Google Scholar 

  • Ellis, R. G. & Oldenburg, D. W. (1994): The pole-pole 3D-DC resistivity inverse problem: a conjugate-gradient approach. Geophys. J. Int., 119, 187–194.

    Google Scholar 

  • FLATHE, H. (1974): Aspekte zur Bewertung des Informationsinhaltes geoelektrischer Sondierungskurven bei der Prospektion auf Grundwasser. Geol. Jb. E2, Hannover, 111–121.

    Google Scholar 

  • Fitterman, D. V., Meekes, J. A. C. & Ritsema, I. L. (1988): Equivalence behavior of three electrical sounding methods as applied to hydrogeological problems. 50th Annual Meeting of the EAEG, The Hague, Netherlands.

    Google Scholar 

  • Fox, R. C., Hohmann, G. W., Killpack, T. J. & Rijo, L. (1980): Topographic effects in resistivity and induced-polarization surveys. Geophysics, 45, 75–93.

    Article  Google Scholar 

  • Friedel, S. (2000): Über die Abbildungseigenschaften der geoelektrischen Impedanztomographie unter Berücksichtigung von endlicher Anzahl und endlicher Genauigkeit der Meßdaten. Dissertation Universität Leipzig, Shaker, Aachen.

    Google Scholar 

  • Furness, P. (1993): Gradient array profiles over thin resistive veins. Geophys. Prosp., 41, 113–130.

    Google Scholar 

  • Ghosh, D. P. (1971a): The application of linear filter theory to the direct interpretation of geoelectrical resistivity sounding measurements. Geophys. Prosp., 19, 192–217.

    Google Scholar 

  • Ghosh, D. P. (1971b): Inverse filter coefficients for the computation of apparent resistivity standard curves for a horizontally stratified earth. Geophys. Prosp., 19, 769–775.

    Google Scholar 

  • Habberjam, G. M. (1979): Apparent resistivity observations and the use of square array techniques. Geoexploration Monographs, Series 1, 9. Bornträger, Berlin.

    Google Scholar 

  • Hoogervorst, G. H. T. C. (1975): Fundamental noise affecting signal-to-noise ratio of resistivity surveys. Geophys. Prosp., 23, 380–390.

    Google Scholar 

  • HOMILIUS, J. & FLATHE, H. (1988): Geoelektrik in der Wassererschließung. In Schneider, H. (Hrsg.): Die Wassererschließung: Erkundung, Bewirtschaftung und Erschließung von Grundwasservorkommen in Theorie und Praxis, 3. Aufl., Vulkan-Verlag Essen, 203–280.

    Google Scholar 

  • Hunt, P., Powell, N. & Watson, K. A. (2001): Limiting apparent-resistivity values for dipping-bed earth models. Geophys. Prosp., 49, 577–591.

    Article  Google Scholar 

  • Inman, J. R. (1975): Resistivity inversion with ridge regression. Geophysics, 40, 798–817.

    Article  Google Scholar 

  • Jacobs, F., Petzold, H. & Nitsch, K.-H. (1987): Geoelektrische Erkundung von Lagerungsstörungen in Lockergesteinen. Geophysik und Geologie, Geophys. Veröff. d. KMU Leipzig, III, H. 4, Akademie Berlin, 161–195.

    Google Scholar 

  • Jacobs, F., Danckwardt, E. & Petzold, G. (1994): Verfahren und Anordnung zur räumlichen Erkundung und Untersuchung unterirdischer Objekte und Schichten. Patent Nr. 4412994, Deutsches Patentamt, München.

    Google Scholar 

  • Johansen, H. K. (1977): A man/computer interpretation system for resistivity soundings over horizontally stratified earth. Geophys. Prosp., 25, 667–691.

    Google Scholar 

  • Karous, M. & Pernu, T. K. (1985): Combined sounding-profiling resistivity measurements with three-electrode arrays. Geophys. Prosp., 33, 447–459.

    Google Scholar 

  • Koefoed, O. (1979): Geosounding principles 1: resistivity sounding measurements. Elsevier, Amsterdam.

    Google Scholar 

  • Kretzer, H. & Niederleithinger, E. (1995): Kombinierter Einsatz von geoelektrischer Tiefensektion und tiefenorientierter Wasserprobennahme zur Erkundung einer Altlasten-Verdachtsfläche. Wasser und Boden, 47,8, 51–55.

    Google Scholar 

  • Lile, O. B., Backe, K. R., Elvebakk, H. & Buan, J. E. (1994): Resistivity measurements on the sea bottom to map fracture zones in the bedrock underneath sediments. Geophys. Prosp., 42, 813–824.

    Google Scholar 

  • Loke, M. H. & Barker, R. D. (1995): Least-squares deconvolution of apparent resistivity pseudosections. Geophysics, 60, 1682–1690.

    Article  Google Scholar 

  • Maillet, R. (1947): The fundamental equations of electrical prospecting. Geophysics, 12 529–556.

    Article  Google Scholar 

  • Marin, L. E., Steinich, B., Jaglowski, D. & Barcelona, M. J. (1998): Hydrogeologic site characterization using azimuthal resistivity surveys. JEEG, 3, 179–184.

    Google Scholar 

  • Mazac, O., Benes, L., Landa, I. & Maskova, A. (1990a): Determination of the extent of oil contamination in groundwater by geoelectrical methods. In: Ward, S. H. (ed.): Geotechnical and environmental geophysics, II: Environmental and Groundwater. Society of Exploration Geophysicists, Tulsa, Oklahoma, 107–119.

    Google Scholar 

  • Mazac, O., Cislerova, M., Kelly, W. E., Landa, I. & Vendohova, D. (1990b): Determination of hydraulic conductivities by surface geoelectrical methods. In: Ward, S. H. (ed.): Geotechnical and environmental geophysics, II: Environmental and Groundwater. Society of Exploration Geophysicists, Tulsa, Oklahoma, 125–131.

    Google Scholar 

  • Meju, M. M. (1995): Simple effective resistivity-depth transformation for infield or real-time data processing. Computers & Geosciences, 21, 985–992.

    Google Scholar 

  • Meyer de Stadelhofen, C. (1994): Anwendung geophysikalischer Verfahren in der Hydrogeologie, Springer, Heidelberg.

    Google Scholar 

  • Militzer, H., Rösler, R. & Lösch, W. (1979): Theoretical and experimental investigations for cavity research with geoelectrical resistivity methods. Geophys. Prosp., 27, 640–652.

    Google Scholar 

  • Militzer, H. & Weber, F. (1985): Angewandte Geophysik, 2, Geoelektrik-Geothermik-Radiometrie-Aerogeophysik. Springer, Wien, Akademie Berlin.

    Google Scholar 

  • Milsom, J. (1989): Field geophysics. Geological Society of London handbook. Open University Press and Halsted Press. Wiley, New York.

    Google Scholar 

  • Morris, M., Ronning, J. S. & Lile, O. B. (1997): Detecting lateral resistivity inhomogeneities with the Schlumberger array. Geophys. Prosp., 45, 435–448.

    Article  Google Scholar 

  • Mundry, E. (1985): Gleichstromverfahren. In: Bender, F. (Hrsg.): Angewandte Geowissenschaften Band II: Methoden der Angewandten Geophysik und mathematische Verfahren in den Geowissenschaften. Enke, Stuttgart, 299–338.

    Google Scholar 

  • Mundry, E. & Dennert, U. (1980): Das Umkehrproblem in der Geoelektrik. Geol. Jb. E 19, 19–38.

    Google Scholar 

  • Mundry, E. & Zschau, H.-J. (1983): Geoelectrical models involving layers with a linear change in resistivity and their use in the investigation of clay deposits. Geophys. Prosp., 31, 810–828.

    Google Scholar 

  • Nowroozi, A. A., Horrocks, S. B. & Henderson, P. (1999): Saltwater intrusion into the freshwater aquifer in the eastern shore of Virginia: a reconnaissance electrical resistivity survey. Journal of Applied Geophysics, 42, 1–22.

    Article  Google Scholar 

  • Ogilvy, R., Meldrum, P., Chambers, J. & Williams, G. (2002): The Use of 3D Electrical Resistivity Tomography to characterise Waste Leachate Distribution within a closed Landfill, Thriplow, UK. Journal of Environmental and Engineering Geophysics, 7, 11–18.

    Google Scholar 

  • Olayinka, A. I. & Yaramanci, U. ( 2002): Smooth and sharp-boundary inversion of two-dimensional pseudosection data in presence of a decrease in resistivity with depth. European Journal of Environmental and Engineering Geophysics, 7, 139–165.

    Google Scholar 

  • Oyo Center Of Applied Geosciences b.v. (1994): Resistivity image profiling applied to the seismic mile area. Bericht OYO CAG, Nieuwegein, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Parra, J. O. (1988): Electrical response of a leak in a geomembrane liner. Geophysics, 53, 1445–1458.

    Article  Google Scholar 

  • Parra, J. O. & Owen, Th. E. (1990): Synthetically focused resistivity for detecting deep targets. In: Ward, S. H. (ed.): Geotechnical and environmental geophysics III: Geotechnical. Society of Exploration Geophysicists, Tulsa, Oklahoma, 37–50.

    Google Scholar 

  • Patella, D. (1986): Low-pass filtering of noisy Schlumberger sounding curves. Geophys. Prosp., 34, 109–123.

    Google Scholar 

  • Ramirez, A., Daily, W., Binley, A., Labrecque, D. & Roelant, D. (1996): Detection of leaks in underground storage tanks using electrical resistance methods. JEEG, 1, 189–203.

    Google Scholar 

  • Roy, A. & Apparao, A. (1971): Depth of investigation in direct current methods. Geophysics, 36, 943–959.

    Article  Google Scholar 

  • Sandberg, S. K. (1993): Examples of resolution improvement in geoelectrical soundings applied to groundwater investigations. Geophys. Prosp., 41, 207–227.

    Google Scholar 

  • Sasaki, Y. (1994): 3D-resistivity inversion using the finite-element method. Geophysics, 59, 1839–1848.

    Article  Google Scholar 

  • Schulz, R. & Tezkan, B. (1988): Interpretation of resistivity measurements over 2D-structures. Geophys. Prosp., 36, 962–975.

    Google Scholar 

  • Schulze, B., Seidel, K. & Seidemann, O. (1992): Ergebnisbericht über magnetische, gravimetrische, geoelektrische und refraktionsseismische Messungen am Teststandort Eulenberg. Bericht Geophysik GGD, Leipzig, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Seidel, K. & Niederleithinger, E. (1993): Ergebnisbericht Geoelektrische Widerstands-und IP-Messungen im Umfeld der Deponien Schöneiche und Schöneicher Plan (Land Brandenburg). Bericht Geophysik GGD, Leipzig und BfG Lorenz, Berlin, im Auftrag von Grebner Ingenieure GmbH.

    Google Scholar 

  • Shima, H. (1990): Two-dimensional automatic resistivity inversion technique using alpha — centers. Geophysics, 55, 682–694.

    Article  Google Scholar 

  • Slater, L. D., Sandberg, S. K. & Jankowski, M. (1998): Survey design procedures and data processing techniques applied to the EM azimuthal resistivity method. JEEG, 3, 167–177.

    Google Scholar 

  • Spitzer, K. (1995): A 3D-finite difference algorithm for DC resistivity modelling using conjugate gradient methods. Geophys. J. Int., 123, 903–914.

    Google Scholar 

  • Tabbagh, A., Benderitter, Y., Michot, D. & Panissod, C. (2002): Measurement of variations in soil electrical resistivity for assessing the volume affected by plant water uptake. European Journal of Environmental and Engineering Geophysics, 7, 229–237.

    Google Scholar 

  • Telford, W. M., Geldart, L. P. & Sheriff, R. E. (1990): Applied geophysics, 2nd. edn., Cambridge University Press, Cambridge.

    Google Scholar 

  • Vickery, A. C. & Hobbs, B. A. (2002): The effect of subsurface pipes on apparent-resistivity measurements. Geophys. Prosp., 50, 1–13.

    Article  Google Scholar 

  • Ward, S. H. (1990): Resistivity and induced polarization methods. In: Ward, S. H. (ed.): Geotechnical and environmental geophysics, I: Review and tutorial. Society of Exploration Geophysicists, Tulsa, Oklahoma, 147–189.

    Google Scholar 

  • Watson, K. A. & Barker, R. D. (1999): Differentiating anisotropy and lateral effects using azimuthal resistivity offset Wenner soundings. Geophysics, 64, 739–745.

    Article  Google Scholar 

  • Watson, K. A. & Barker, R. D. (2002): Use of the azimuthal offset Wenner technique to characterise a single dipping interface. European Journal of Environmental and Engineering Geophysics, 7, 103–120.

    Google Scholar 

  • Zhou, B. & Dahlin, T. (2003): Properties and effects of measurement errors on 2D resistivity imaging surveys. Near Surface Geophysics, 2003, 105–117.

    Google Scholar 

  • Zohdy, A. A. R. (1989): A new method for the automatic interpretation of Schlumberger and Wenner sounding curves. Geophysics, 54, 245–253.

    Article  Google Scholar 

  • Beard, L. P. & Tripp, A. C. (1995): Investigating the resolution of IP-arrays using inverse theory. Geophysics, 60, 1326–1341.

    Article  Google Scholar 

  • Behrens, W. & Weller, A. (1996): Anwendung der Geophysik zur Bewertung der geologischen Barriere am Beispiel eines Deponiestandortes. Müll und Abfall, 28. Jg., 82–89.

    Google Scholar 

  • Bertin, J. & Loeb, J. (1976a): Experimental and theoretical aspects of induced polarization, 1, Presentation and application of the IP method — case histories. Borntraeger, Berlin.

    Google Scholar 

  • Bertin, J. & Loeb, J. (1976b): Experimental and theoretical aspects of induced polarization, 2, Macroscopic and microscopic theories. Borntraeger, Berlin.

    Google Scholar 

  • Boadu, F. K. & Seabruck, B. (2000): Estimating hydraulic conductivity and porosity of soils from spectral electrical response measurements. JEEG, 5, 1–9.

    Google Scholar 

  • Börner, F. D. & Schön, J. H. (1991): A relation between the quadrature component of electrical conductivity and the specific surface area of sedimentary rocks. The Log Analyst, 32, 612–613.

    Google Scholar 

  • Börner, F. D., Gruhne, M. & Schön, J. H. (1993): Contamination indications derived from electrical properties in the low frequency range. Geophys. Prosp., 41, 83–98.

    Google Scholar 

  • Börner, F. D., Schopper, J. R. & Weller, A. (1996): Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys. Prosp. 44, 583–602.

    Google Scholar 

  • Brown, R. J. (1985): EM Coupling in multifrequency IP and a generalization of the cole-cole impedance model. Geophys. Prosp., 33, 282–302.

    Google Scholar 

  • Burkhardt, H. & Radic, T. (1994): Entwicklung und Erprobung einer Apparatur und eines Auswerteverfahrens zur hochauflösenden Messung der induzierten Polarisation. Schlußbericht zum Verbundvorhaben „Methoden zur Erkundung und Beschreibung des Untergrundes von Deponien und Altlasten“, BGR.

    Google Scholar 

  • Coggon, J. H. (1973): A comparison of IP electrode arrays. Geophysics, 38, 737–761.

    Article  Google Scholar 

  • Cole, K. S. & Cole, R. H. (1941): Dispersion and absorption in dielectrics. 1. Alternating current fields. J. Chem. Phys., 9, 341.

    Article  Google Scholar 

  • Daily, W., Ramirez, A., Newmark, R. & George, V. (2000): Imaging UXO using electrical impedance tomography. JEEG, 5, 11–23.

    Google Scholar 

  • Dias, C. A. (2000): Developments in a model to describe low-frequency electrical polarization of rocks. Geophysics, 65, 43–451.

    Article  Google Scholar 

  • Esparza, F. J. & Gomez-Trevino, E. (1997): 1-D inversion of resistivity and induced polarization data for the least number of layers. Geophysics, 62, 1724–1729.

    Article  Google Scholar 

  • Fink, J. B., Sternberg, B. K., Mc Alister, E. O., Wieduwilt, W. G. & Ward, S. H. (1990): Induced polarization, applications and case histories. Society of Exploration Geophysicists, Tulsa, Oklahoma.

    Google Scholar 

  • Fraser, D. C. (1981): Contour map presentation of dipol-dipol induced polarization. Geophys. Prosp., 29, 639–650.

    Google Scholar 

  • Grahame, D. C. (1947): The electrical double layer and the theory of electrocapillarity. Chem. Rev., 41, 441–501.

    Article  Google Scholar 

  • Grissemann, CH. & Reitmayr, G. (1984): Bericht über geophysikalische Methoden-entwicklung mit begleitenden Kernbohrungen in Ostbayern. Abschlußbericht zum BMFT-Forschungsvorhaben RG 8104 3. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.

    Google Scholar 

  • Guiquing, Z. & Yanzhong, L. (1990): The application of IP and resistivity methods to detect underground metal pipes and cables. In: Ward, S. H. (ed.): Geotechnical and Environmental Geophysics, III: Geotechnical. Society of Exploration Geophysicists, Tulsa, Oklahoma, 239–248.

    Google Scholar 

  • Johinson, I. M. (1984): Spectral induced polarization parameters as determined through time-domain measurements. Geophysics, 49, 1993–2003.

    Article  Google Scholar 

  • Kretzer, H. & Niederleithinger, E. (1995): Kombinierter Einsatz von geoelektrischer Tiefensektion und tiefenorientierter Wasserprobennahme zur Erkundung einer Altlasten-Verdachtsfläche. Wasser & Boden, 47,8, 51–55.

    Google Scholar 

  • Li, Y. & Oldenburg, D. W. (2000): 3-D inversion of induced polarization data. Geophysics, 65, 1931–1945

    Article  Google Scholar 

  • Lindner, H., Seidel, K. & Steiner, G. (1992): Ergebnisse über geoelektrische, elektromagnetische und magnetische Messungen im Gebiet Rabenstein/Chemnitz. Geophysik GGD, Leipzig.

    Google Scholar 

  • Mallet, Ch. & Pacquant, J. (1954): Erdstaudämme. Verlag Technik Berlin.

    Google Scholar 

  • Major, J. & Silic, J. (1981): Restrictions on the use of cole-cole dispersion models in complex resistivity interpretations. Geophysics, 46, 916–931.

    Article  Google Scholar 

  • Militzer, H. & Weber, F. (1985): Angewandte Geophysik, 2, Geoelektrik-Geothermik-Radiometrie-Aerogeophysik. Springer Wien, Akademie-Verlag Berlin.

    Google Scholar 

  • Oldenburg, D. W. & Li, Y. (1994): Inversion of induced polarization data. Geophysics, 59, 1327–1341.

    Article  Google Scholar 

  • Oldenburg, D. W. & Li, Y. (1994): Estimating depth of investigation in dc resistivity and IP surveys. Geophysics, 64, 403–416

    Article  Google Scholar 

  • Olhoeft, G. (1985): Low frequency electrical properties. Geophysics, 50, 2492–2503.

    Article  Google Scholar 

  • Olhoeft, G. B. & King, T. (1991): Mapping subsurface organic compounds noninvasively by their reactions with clays. U. S. Geological Survey Toxic Substance Hydrology Program, Proc. of the Technical Meeting, Monterey, CA, March 1991, U. S. G. S. Water Resources Investigation Report 91-4034, 552–557.

    Google Scholar 

  • Pape, H., Riepe, H. M. & Schopper, J. R. (1982): A pigeon-hole model for relating permeability to specific surface. The Log Analyst, 23, 5–13.

    Google Scholar 

  • Pelton, W. H., Rijo, L. & Swift, C. M. (1978a): Inversion of two-dimensional resistivity and induced polarization data. Geophysics, 43, 788–803.

    Article  Google Scholar 

  • Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R. & Nelson, P. H. (1978b): Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics, 43, 588–609.

    Article  Google Scholar 

  • Roy, I. G. (1999): An efficient non-linear least squares 1D inversion scheme for resistivity and IP sounding data. Geophys. Prosp., 47, 527–550.

    Article  Google Scholar 

  • Schön, J. (1983): Petrophysik — Physikalische Eigenschaften von Gesteinen und Mineralen. Enke Stuttgart.

    Google Scholar 

  • Seigel, H. O. & Howland-Rose, A. W. (1990): Magnetic induced-polarization method. In: FINK, J. B., STERNBERG, B. K., MC ALISTER, E. O., WIEDUWILT, W. G. & WARD, S. H. (eds.): Induced polarization, applications and case histories. Society of Exploration Geophysicists, Tulsa, Oklahoma, 23–56.

    Google Scholar 

  • Seidel, K. & Niederleithinger, E. (1993): Ergebnisbericht — Geoelektrische Widerstands-und IP-Messungen im Umfeld der Deponien Schöneiche und Schöneicher Plan (Land Brandenburg). Geophysik GGD Leipzig und BfG-Lorenz Berlin, im Auftrag von Grebner Ingenieure.

    Google Scholar 

  • Slater, L. D. & Sandberg, S. K. (2000): Resistivity and induced polarization monitoring of salt transport under natural hydraulic gradients. Geophysics, 65, 408–420.

    Article  Google Scholar 

  • Slater, L. D. & Lesmes, D. (2002): IP interpretation in environmental investigations. Geophysics, 67, 77–88.

    Article  Google Scholar 

  • Sumner, J. S. (1976): Principles of induced polarization for geophysical exploration. Developments in economics, Geology 5, Elsevier, Amsterdam.

    Google Scholar 

  • Telford, W. M., Geldart, L. P. & Sheriff, R. E. (1990): Applied geophysics, 2nd. edn. Cambridge University Press, Cambridge.

    Google Scholar 

  • Towle, J. N., Anderson, R. G., Pelton, W. H., Olhoeft, G. R. & LaBreque, D. (1985): Direct detection of hydrocarbon contaminants using the induced polarization method. 55th Ann. Internat. Meeting SEG, Expanded Abstracts.

    Google Scholar 

  • Vanhalla, H. (1997): Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method. Geophys. Prosp., 45, 303–326.

    Article  Google Scholar 

  • VINEGAR, H. J. & WAXMAN, M. H. (1984): Induced polarization of shaly sands. Geophysics, 49, 1267–1287.

    Article  Google Scholar 

  • Ward, S. H. (1990): Resistivity and induced polarization methods. In: Ward (ed.): Geotechnical and environmental geophysics. I: Review and tutorial. Society of Exploration Geophysicists, Tulsa, Oklahoma, 147–189.

    Google Scholar 

  • Weller, A., Börner, F. & Woitke, L. (1995): Bestimmung der Gesteinsdurchlässigkeit und anderer Gesteinsparameter des oberflächennahen Untergrundes aus geophysi-kalischen Messungen in Rammsonden-Löchem. Forschungsverbundvorhaben „Deponieuntergrund“-Schlußbericht. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.

    Google Scholar 

  • Weller, A. & Börner, F. D. (1996): Measurements of spectral induced polarization for environmental purposes. Environmental Geology, 27, 329–334.

    Article  Google Scholar 

  • Wienberg, R. (1990): Zum Einfluß organischer Schadstoffe auf Deponietone — Teil 1: Unspezifische Interaktionen. In: AbfallwirtschaftsJournal 2, EF — Verlag für Energie und Umwelttechnik, Berlin, 222–230.

    Google Scholar 

  • Armbruster, H., Hötzl, H., Lazar, C., Merkler, G.-P. & Ungar, E. (1993): Leckagendetektion in einer Kunststoffdichtung mit „Mise-à-la-Masse“. In: Geophysikalische Untersuchungen auf Deponien und Altlasten, Heft 2, TU Bergakademie Freiberg, Institut für Geophysik, 5–15.

    Google Scholar 

  • Asch, T. & Morrison, H. F. (1989): Mapping and monitoring electrical resistivity with surface and subsurface electrode arrays. Geophysics, 54, 235–244.

    Article  Google Scholar 

  • Beasley, C. W. & Ward, S. H. (1986): Three-dimensional Mise-à-la-Masse modeling applied to mapping fracture zones. Geophysics, 51, 98–113.

    Article  Google Scholar 

  • Bevc, D. & Morrison, H. F. (1991): Borehole to surface electrical monitoring of salt water injection experiment. Geophysics, 56, 769–777.

    Article  Google Scholar 

  • Bowker, A. (1991): Quantitative interpretation on three-dimensional Mise-à-la-Masse data. A case history from Gairloch, Northwest Scotland. Geoexploration, 28, 1–22.

    Article  Google Scholar 

  • Eloranta, E. H. (1985): A comparison between Mise-à-la-Masse anomalies obtained by pole-pole and pole-dipole electrode configurations. Geoexploration, 23, 471–481.

    Article  Google Scholar 

  • Eloranta, E. H. (1986): The behaviour of mise-à-la-masse anomalies near a vertical contact. Geoexploration, 24, 1–14.

    Article  Google Scholar 

  • Eloranta, E. H. (1988): The modelling of Mise-à-la-Masse anomalies in an anisotropic half space by the integral equation method. Geoexploration, 25, 93–101.

    Article  Google Scholar 

  • Furness, P. (1999): Mise-à-la-masse interpretation using a perfect conductor in a pieceweise uniform earth. Geophys. Prosp. 47, 393–409

    Article  Google Scholar 

  • Hardt, I. (1982): Geoelektrische Frac-Ortung. Erdöl-Erdgas-Zeitschrift, 98, 309–312.

    Google Scholar 

  • Krajew, A. P.( 1957): Grundlagen der Geoelektrik. Technik Berlin.

    Google Scholar 

  • Mazac, O., Benes, L., Landa, 1. & Maskova, A. (1990): Determination of the extent of oil contamination in groundwater by geoelectrical methods. In: Ward, S. H. (ed.): Geotechnical and environmental geophysics, II: Environmental and Groundwater Society of Exploration Geophysicists, Tulsa, Oklahoma, 107–112.

    Google Scholar 

  • Mansimha, L. & Mwenifumbo, C. J. (1983): A Mise-à-la Masse study of the Cavendish geophysical test site. Geophysics, 48, 1252–1257.

    Article  Google Scholar 

  • Meyer de Stadelhofen, C. (1994): Anwendung geophysikalischer Methoden in der Hydrogeologie. Springer Berlin Heidelberg New York Tokyo.

    Google Scholar 

  • Militzer, H. & Weber, F., (1985a): Angewandte Geophysik, 1, Gravimetrie — Magnetik. Springer Wien, Akademie Berlin.

    Google Scholar 

  • Militzer, H. & Weber, F. (1985b): Angewandte Geophysik, 2, Geoelektrik — Geothermik — Radiometrie — Aerogeophysik. Springer Wien, Akademie Berlin.

    Google Scholar 

  • Militzer, H., Schön, J. & Stötzner, U. (1986): Angewandte Geophysik im Ingenieur-und Bergbau, 2. Aufl., Enke Stuttgart.

    Google Scholar 

  • Opplinger, G. L. (1984): Three-dimensional terrain corrections for Mise-à-la-Masse and magnetometric resistivity surveys. Geophysics, 49, 1718–1729.

    Article  Google Scholar 

  • Osiensky, J. L. & Donaldson, P. R. (1994): A modified Mise-à-la-Masse method for contaminant plume delineation. Groundwater, 32, 448–456.

    Google Scholar 

  • Seidel, K. (1994): Ergebnisbericht Spezialmessungen Geoelektrik Deponie Eulenberg. Methode Mise-à-la-Masse, Geophysik GGD, Leipzig, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Soininen, H. (1987): Mise-à-la-masse modelling by integral equation with the continuity equation as a constraint. Geoexploration, 24, 455–460.

    Article  Google Scholar 

  • Sumner, J. S. (1981): The Mise-à-la-Masse induced-polarization method. SEG Annual Meeting Abstracts.

    Google Scholar 

  • White, P. A. (1994): Electrode arrays for measuring groundwater flow direction and velocity. Geophysics, 59, 192–201.

    Article  Google Scholar 

  • Adam, Ch. (1988): Beitrag zur repräsentativen Behandlung von Migrationsproblemen. Z. angew. Geol., 34, 178–182.

    Google Scholar 

  • Bevc, D. & Morrison, H. F. (1991): Borehole to surface electrical monitoring of salt water injection experiment. Geophysics, 56, 769–777.

    Article  Google Scholar 

  • Dehnert, J. & Nestler, W. (1998): Bestimmung von Richtung und Geschwindigkeit von Grundwasserstömungen mit Hilfe der “Methode des geladenen Körpers”. Umweltforschungszentrum Leipzig-Halle, Bericht 7/98, Wassergewinnung in Talgrundwasserleitern im Einzugsgebiet der Elbe, 76–78.

    Google Scholar 

  • Deutsche Einheitsverfahren zur Wasser-, Abwasser-und Schlammuntersuchung, I,31. Lieferung 1994. Verlag Chemie, Weinheim.

    Google Scholar 

  • Dey, A. & Morrison, H. F. (1979): Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics, 44, 753–780.

    Article  Google Scholar 

  • Drost, W., Geyh, M. & Moser, H. (1988): Isotopenhydrogeologische Methoden. In Schneider (Hrsg.): Die Wassererschließung: Erkundung, Bewirtschaftung und Er-schließung von Grundwasservorkommen in Theorie und Praxis, 3. Aufl., Vulkan-Verlag Essen.

    Google Scholar 

  • Hofmann, W., Lebküchner, H. & Scherler, P.-C. (1984): Grundwasserkörper und Grundwasserbewegung. In Bender (Hrsg.): Angewandte Geowissenschaften III: Geologie der Kohlenwasserstoffe, Hydrogeologie, Ingenieurgeologie, angewandte Geowissenschaften in Raumplanung und Umweltschutz. Enke Stuttgart.

    Google Scholar 

  • Kaä, W. (1992): Hydrogeologische Markierungstechniken bei der Altlastensanierung. Geowissenschaften, 10, 199–205.

    Google Scholar 

  • Lege, T., Kolditz, O. & Zielke, W. (1996): Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, 2, Strömungs-und Transportmodellierung. Springer Berlin Heidelberg New York Tokyo.

    Google Scholar 

  • Mares, S., Henzl, T., Woltaer, L., Lux, N. & Stump, U. (2003): New logging tool for measuring azimuth of the groundwater flow. Near Surface Geophysics, 1, 31–37.

    Google Scholar 

  • Mazac, O., Landa, I. & Kelly, W. E. (1995): Limits of surface resistivity methods in determining transient parameters by mathematical modelling. Proceedings 1st Meeting Environmental and Engineering Geophysics (EEGS), Torino, Italy, September, 38–41.

    Google Scholar 

  • Militzer, H., Schön, J. & Stötzner, U. (1986): Angewandte Geophysik im Ingenieur-und Bergbau. Enke Stuttgart.

    Google Scholar 

  • Militzer, H. & Weber, F. (1985): Angewandte Geophysik 2. Geoelektrik-Geothermik-Radiometrie-Aerogeophysik. Springer Wien, Akademie-Verlag Berlin.

    Google Scholar 

  • Morris, M. (1996): Geolectrical monitoring of a tracer injection experiment: modelling and interpretation. Europ. J. Environm. Engin. Geophys., 1, 15–34.

    Google Scholar 

  • Parsiegla, K. (1994): Dokumentation der Bohrergebnisse im Umfeld der Deponien Schöneiche und Schöneicher Plan. Geol. Landesamt Brandenburg, im Auftrag der Bundesanstalt fiür Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Reissmann, C. & Jacobs, F. (1998): Dreidimensionale Beobachtung von Strömungspro-zessen mit hochauflösender geoelektrischer Computertomographie. Umweltforschungszentrum Leipzig-Halle, Bericht 7/98, Wassergewinnung in Talgrundwasserleitern im Einzugsgebiet der Elbe, 84–90.

    Google Scholar 

  • Repsold, H. (1976): Über das Verhalten des Formationsfaktors in Lockersedimenten bei schwach mineralisierten Porenwässem. Geol. Jb. E9, Hannover, 19–34.

    Google Scholar 

  • Rösler, R. (1967): Der Einfluß einer Bohrung auf die Grundwasserströmung. Z. angew. Geol., 13, 351–355.

    Google Scholar 

  • Schütze, C., Friedel, S. & Jacobs, F. (2002): Detection of three-dimensional transport processes in porous aquifers using geoelectrical process quotient tomography. Europ. J. Environm. Engin. Geophys., 7, 3–19.

    Google Scholar 

  • Sebulke, J. (1988): Entwicklung und Erprobung eines physikalischen Meßsystems zur Erkundung von erwärmten Grundwasserströmungen. Schlußbericht zum Forschungs-vorhaben ERP 2508 an den Senator für Wirtschaft von Berlin.

    Google Scholar 

  • Sebulke, J. (1994): Bericht über die Grundwassergeschwindigkeitsmessungen am Teststandort Schöneiche. Umweltanalytik & Geophysik GmbH Berlin, 1994, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Sommer von Jarmersted, C., Pekdeger, A. & Kabelitz, T. (1995): Modellierung der hydraulischen Grundwasserströmungsverhältnisse am Teststandort Schöneiche und Schöneicher Plan. Abschlußbericht zum Verbundvorhaben Deponieuntergrund, Teil-projekt 9b: Einsatz geostatistischer Verfahren; FU Berlin (unveröffentlicht).

    Google Scholar 

  • White, P. A. (1988): Measurements of ground-water parameters using salt-water injection and surface resistivity. Ground Water, 26, 179–186.

    Google Scholar 

  • White, P. A. (1994): Electrode arrays for measuring groundwater flow direction and velocity. Geophysics, 59, 192–201.

    Article  Google Scholar 

  • Anderson, W. L. (1979): Numerical integration of related hankel transforms of orders 0 and 1 by adaptive digital filtering. Geophysics, 44, 1287–1305.

    Article  Google Scholar 

  • Aittoniemi, K., Rajala, I. & Sarvas, I. (1987): Interactive inversion algorithm and apparent resistivity versus depth (ARD) lot in multifrequency soundings. Acta Politechnica Skand. Appl. Phys. Ser., 157.

    Google Scholar 

  • Auken, E., Nebel, L., Sorensen, K., Breiner, M., Pellerin, L. & Christensen, N. B. (2002): EMMA — a geophysical training and education tool for electromagnetic modeling and analysis. JEEG, 7, 57–68. Software free available from http://www.hgg.au.dk.

    Google Scholar 

  • Bartel, L. C., Cress, D. H. & Stolarczyk, L. G. (1997): Evaluation of the electromagnetic gradiometer concept for detection of underground structures — theory and application. JEEG, 2, 127–136.

    Google Scholar 

  • Bostick, F. X. (1977): A simple almost exact method of magnetotelluric analysis. Proceedings Workshop on Electrical Methods in Geothermal Exploration. January, Salt Lake City, 174–183; USGS Contract 14-08-001-G-359.

    Google Scholar 

  • Das, U. C. (1995): Apparent resistivity curves in controlled-source electromagnetic sounding directly reflecting true resistivities in a layered earth. Geophysics, 60, 53–60.

    Article  Google Scholar 

  • Das, K., Becker, A. & Lee, K. H. (2002): Experimental validation of the wavefield transform of electromagnetic fields. Geophys. Prosp., 50, 441–451.

    Article  Google Scholar 

  • Dyck, A. V. (1991): Drill-hole electromagnetic methods. In: Nabighian, M. N. (ed.): Electromagnetic methods in applied geophysics — applications part B. SEG, Tulsa, 881–926.

    Google Scholar 

  • Farkas, I., Kardeván, P., Rezessy, G. & Szabadvaäry, L. (1981): Development of the multifrequency electromagnetic method with inductive coupling. Annual Report of ELGI 1980, 73–75, 157–159.

    Google Scholar 

  • Farkas, I. & Kakas, K. (1982): Measurements with MAXIPROBE abroad (Venice, South Bavaria). Annual Report of ELGI 1981, 107–109, 161–162.

    Google Scholar 

  • Farkas, I., Kardeván, P., Rezessy, G., Schmid, CH., Szabadváry, L. & Weber, F. (1991): EM-soundings in water-and brown-coal prospecting. Case histories. Geophysical Transactions, 36, 103–111.

    Google Scholar 

  • Felfer, W. (1993): Geophysik an Altlasten. Eine vergleichende Beschreibung der wichtigsten geophysikalischen Verfahren. Report UBA-93-075, Bundesministerium für Umwelt, Jugend und Familie, Wien.

    Google Scholar 

  • Fitterman, D. V., Meekes, J. A. C. & Ritsema, I. L. (1988): Equivalence behaviour of three electrical sounding methods as applied to hydrogeological problems. 50th Annual Meeting of the EAEG, The Hague, Netherlands.

    Google Scholar 

  • Frischknecht, F. C. (1988): Electromagnetic physical scale modeling. In: Nabighian, M. N. (ed.): Electromagnetic methods in applied geophysics — Theory, 1. Society of Exploration Geophysicists, Tulsa, 365–441.

    Google Scholar 

  • Frischknecht, F. C., Labson, V. F., Spies, B. R. & Anderson, W. L. (1991): Profiling methods using small sources. In: Nabighian, M. N. (ed.): Electromagnetic methods in applied geophysics, 2, Part A, Society of Exploration Geohysicists, Tulsa, 105–270.

    Google Scholar 

  • Ghosh, M. K. (1982): First five years experience with the Maxi-Probe EMR-16 System for deep mineral exploration. Geophysics, 47, 432–433.

    Google Scholar 

  • Goldstein, N. E., Benson, S. M. & Alumbaugh, D. (1990): Saline groundwater plume mapping with electromagnetics. In: Ward, S. H. (ed.): Geotechnical and environmental geophysics, II: Environmental and groundwater. Society of Exploration Geophysicists, Tulsa, 17–25.

    Google Scholar 

  • Grant, F. S & West, G. F. (1965): Interpretation theory in applied geophysics. McGraw Hill, New York.

    Google Scholar 

  • Greinwald, S. (1985): Wechselstromverfahren. In: Bender, F. ( Hrsg.): Angewandte Geowissenschaften, II: Methoden der Angewandten Geophysik und mathematische Verfahren in den Geowissenschaften. Enke, Stuttgart, 352–387.

    Google Scholar 

  • Grissemann, CH. & Ludwig, R. (1986): Recherche sur la fracturation profonde en zone de socle cristallin a partir de forages a gros debit et de lineaments landsat a l’aide de methodes geophysiques avancees. Cooperation techniques projet no. 82.2060.0, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.

    Google Scholar 

  • Gyurkó, P., Kardeván, P. & Szabadvaáry, L. (1983): Multifrequency electromagnetic sounding in Czechoslovakia, in Baden-Württemberg and in Lower-Austria. Annual Report of ELGI 1982, 172–180, 246–250.

    Google Scholar 

  • Gyurkó, P., Kardeván, P. & Rezessy, G. (1984): Multifrequency electromagnetic sounding (MFS) in Northern Finland and in Upper Austria. Annual Report of ELGI 1983, 125–128, 177–179.

    Google Scholar 

  • Hanneson, J. E. & West, G. F. (1984): The horizontal loop electromagnetic response of a thin plate in a conductive earth: Part II — computational results and examples. Geophysics, 49, 421–432.

    Article  Google Scholar 

  • HUIMING, CH., HONGHAI, XU & YANG, XU (1990): Detecting underground cables and metal conducting pipes by using EM methods. In: Ward, S. H. (ed.): Geotechnical and environmental geophysics, III: Geotechnical. Society of Exploration Geophysicists, Tulsa, 229–237.

    Google Scholar 

  • Kardeván, P. & Prácser, E. (1984): Effect of topography of frequency sounding performed with the Maxi-Probe EMR-16 System. Annual Report of ELGI 1983, 154–156.

    Google Scholar 

  • Kaufman, A. A. & Hoekstra, P. (2001): Electromagnetic soundings. Methods in Geochemistry and Geophysics, 34, Elsevier, Amsterdam.

    Google Scholar 

  • Keller, G. V. ( 1971): Natural-field and controlled-source methods in electromagnetic sounding methods. Geoexploration, 9, 99–147.

    Article  Google Scholar 

  • Keller, G. V. & Frischknecht, F. C. (1966): Electrical methods in geophysical prospecting. Pergamon Press, Oxford.

    Google Scholar 

  • Ketola, M. & Puranen, M. (1967): Type curves for the interpretation of slingram (Horizontal Loop) anomalies over tabular bodies. Report of Investigations, No. 1. Geological Survey of Finland, Otaniemi.

    Google Scholar 

  • Kiss, J., Rezessy, G. & Vértesy, L. (1993): Ergebnisse der strukturgeophysikalischen Messungen am Teststandort Eulenberg bei Arnstadt/Thüringen. Elektromagnetische Sondierungen und Kartierung mit dem MAXIPROBE EMR-16. ELGI, Budapest, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Koefod, O., Ghosh, D. P. & Polman, G. J. (1972): Computation of type curves for electromagnetic depth sounding with a horizontal transmitting coil by means of a digital linear filter. Geophys. Prosp., 20, 406–420.

    Google Scholar 

  • Lindner, H., Seidel, K. & Steiner, G. (1992): Ergebnisbericht über geoelektrische, elektromagnetische und magnetische Messungen im Meßgebiet Rabenstein/Chemnitz. Geophysik GGD, Leipzig, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • MEYER DE STADELHOFEN, C. (1994): Anwendung geophysikalischer Verfahren in der Hydrogeologie. Springer, Berlin Heidelberg New York Tokyo.

    Google Scholar 

  • Mcneill, J. D. (1980): Electromagnetic terrain conductivity measurements at low induction numbers. Geonics Technical Note TN-6.

    Google Scholar 

  • Mcneill, J. D. (1988): Advances in electromagnetic methods for groundwater studies. In: Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP). March 28–31, 1988, Golden, Colorado, 251–348.

    Google Scholar 

  • McNeill, J. D. (1990): Use of electromagnetic methods for groundwater studies. In.: Ward, S. H. (ed.): Geotechnical and environmental geophysics, I: Review and tutorial. Society of Exploration Geophysicists, Tulsa, 191–218.

    Google Scholar 

  • Mcneill, J. D. (1991): Advances in electromagnetic methods for groundwater studies. Geoexploration, 27, 65–80.

    Article  Google Scholar 

  • Militzer, H. & Weber, F. (1985): Angewandte Geophysik, 2: Geoelektrik-Geothermik-Radiometrie-Aerogeophysik. Springer, Wien, Akademie Berlin.

    Google Scholar 

  • Milsom, J. (1989): Field geophysics. Open University Press, Milton Keynes and Halsted Press, Wiley, New-York.

    Google Scholar 

  • Monier-Williams, M. E., Greenhouse, J. P., Mendes, J. M. & Ellert, N. (1990): Terrain conductivity mapping with topographic corrections at three waste disposal sites in brazil. In: Ward, S. H. (ed.): Geotechnical and environmental geophysics, II: Environmental and groundwater. Society of Exploration Geophysicists, Tulsa, 41–55.

    Google Scholar 

  • Mundry, E. & Blohm, E.-K. (1987): Frequency electromagnetic sounding using a vertical magnetic dipole. Geophys. Prosp., 35, 110–123.

    Google Scholar 

  • Mundry E. & Vogelsang, D. (1988): Elektromagnetische Verfahren. In Schneider, H. (Hrsg.): Die Wassererschließung, 3. Aufl., Vulkan, Essen, 230–235.

    Google Scholar 

  • Nabighian, M. N. (ed.) (1988): Electromagnetic methods in applied geophysics — Theory, 1 and 2. SEG, Tulsa.

    Google Scholar 

  • Palacky, G. J. (1991): Application of the multifrequency horizontal-loop EM-method in overburden investigations. Geophys. Prosp., 39, 1061–1082.

    Google Scholar 

  • Patra, H. P. & Mallick, K. (1980): Geosounding principles, 2. Time-varying geoelectric soundings. Elsevier, Amsterdam Oxford New York.

    Google Scholar 

  • Prácser, E., Szigeti, G., & Szabadvaáry, L. (1983): Computation of multifrequency electromagnetic sounding curves. Annual Report of ELGI 1983, 118–121, 213–216.

    Google Scholar 

  • Prácser, E. & Kardeván, P. (1987): Study of the orientation errors and their elimination in Maxi-Probe soundings. Annual Report of ELGI 1986, 209–210.

    Google Scholar 

  • Reynolds, J. M. (1997): An introduction to applied and environmental Geophysics. John Wiley & Sons Ltd., Chichester.

    Google Scholar 

  • Schulze, B., Seidel, K. & Seidemann, O. (1992): Ergebnisbericht über magnetische, gravimetrische, geoelektrische und refraktionsseismische Messungen am Teststandort Eulenberg. Geophysik GGD, Leipzig, im Auftrag der Bundesanstalt für Geowissenschaften und Rohstoffe.

    Google Scholar 

  • Sengpiel, K.-P. (1976): Korrekte Nulleinstellung von Slingram-Geräten über leitendem Untergrund. Geol. Jb., E6, Hannover, 3–9.

    Google Scholar 

  • Sheriff, R. E. (1991):Encyclopedic dictionary of exploration geophysics. 3rd edn. Society of Exploration Geophysicists, Tulsa.

    Google Scholar 

  • Sinha, A. K. (1979): MAXIPROBE EMR-16: A new wide-band multifrequency ground E.M. system. Current Research, Part B. Geological Survey of Canada, Paper 79-1B, 23–26.

    Google Scholar 

  • Sinha, A. K. (1980): A study of topographic and misorientation effects in multi-frequency electromagnetic soundings. Geoexploration, 18, 111–113.

    Article  Google Scholar 

  • Spies, B. R. & Eggers, D. W. (1986): The use and misuse of apparent resistivity in electromagnetic methods. Geophysics, 51, 1462–1471.

    Article  Google Scholar 

  • Spies, B. R. (1989): Depth of investigation in electromagnetic sounding methods. Geophysics, 54, 872–888.

    Article  Google Scholar 

  • Spies, B. R. & Frischknecht, F. C. (1991): Electromagnetic Sounding. In: Nabighian, M. N. (ed.): Electromagnetic methods in applied geophysics, 2, Part A, Society of Exploration Geophysicists, Tulsa, 285–425.

    Google Scholar 

  • Sternberg, B. K. (1999): A new method of subsurface imaging — the LASI high frequency ellipticity system: Part 1–3. JEEG, 4, 197–240.

    Google Scholar 

  • Szabadváry, L., Szantner, F., Kakas, K., Nyerges, L., Szörényi, Z. & Farkas, I. (1985): The use of multi-frequency electromagnetic measurement in bauxite prospecting in Hungary. Travaux ICSOBA, 14–15, 1984/1985, 209–217.

    Google Scholar 

  • Szabadváry, L. (1987): Bauxite exploration in Hungary. Geophysics, 52, 1166–1168.

    Google Scholar 

  • Szabadváry, L., Laczkovits, J. & Fejes, I. (1990): Möglichkeiten der Geophysik im Umweltschutz mit Beispielen aus Ungarn. Leobener Hefte zur Angewandten Geophysik, 3, 56–72.

    Google Scholar 

  • Szigeti, G. R. (1985): A study of the domain of investigation of frequency sounding. Annual Report of ELGI 1984, 181–185.

    Google Scholar 

  • Telford, W. M., Geldart, L. P. & Sheriff, R. E. (1990): Applied geophysics, 2nd edn., Cambridge University Press, Cambridge.

    Google Scholar 

  • Vanyan, L. L. (1965): Osnovy elektromagnetnich sondirovanii. (Grundlagen elektromagnetischer Sondierungen). Izdatelstvo Nedra, Moskva.

    Google Scholar 

  • Varga, M. (1987): Study of the effect of displacement currents. Annual report of ELGI 1986, 212–213.

    Google Scholar 

  • Varga, M. (1988): Jelentés az 1988 évi Geoelektromos Módszerfejlesztésröl. Methodischer Bericht ELGI.

    Google Scholar 

  • Verma, S. K. & Sharma, S. P. (1995): EM mapping of pollution plumes. Proceedings of the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP). Orlando, Florida, April 23–26, 1995.

    Google Scholar 

  • Verma, S. K. & Sharma, S. P. (1995): Focused resolution of thin conducting layers by various dipole EM systems. Geophysics, 60, 381–389.

    Article  Google Scholar 

  • Vogelsang, D. (1991): Elektromagnetische Erkundung grundwasserfüihrender Strukturen. Geol. Jb., E 48, Hannover, 283–308.

    Google Scholar 

  • Ward, S. H., Smith, B. D., Glenn, W. E., Rijo, L. & Inman, JR. (1976): Statistical evaluation of electrical sounding methods, Part II: Applied electromagnetic depth sounding. Geophysics, 41, 1222–1235.

    Google Scholar 

  • Ward, S. H. & Hohmann, G. W. (1988): Electromagnetic theory for geophysical applications. In: Nabighian, M. N. (ed.): Electromagnetic methods in applied geophysics — theory, 1. Society of Exploration Geophysicists, Tulsa, 131–311.

    Google Scholar 

  • Wait, J. R. (1955): Mutual electromagnetic coupling of loops over a homogeneous ground. Geophysics, 20, 630–637.

    Article  Google Scholar 

  • West, G. F. & Macnae, J. C. ( 1991): Physics of the electromagnetic induction exploration method, In Nabighian, M. N. (ed.): Electromagnetic methods in applied geophysics, 2, applications, part A and B. Society of Exploration Geophysicists, 5–45.

    Google Scholar 

  • Wilt, M. & Stark, M. (1982): A simple method for calculating apparent resistivity from electromagnetic sounding data. Short note. Geophysics, 47, 1100–1105.

    Google Scholar 

  • Witten, A. Won, I. J. & Norton, S. (1997): Imaging underground structures using broadband electromagnetic induction. JEEG, 2, 105–114.

    Google Scholar 

  • Wöhrl, S. (1994): Die elektromagnetische Horizontalspulenmethode: Neue Wege in der Dateninterpretation. Diplomarbeit am Institut für Geophysik und Meteorologie der TU Braunschweig.

    Google Scholar 

  • Won, I. J. & Keiswetter, D. (1997): Comparison of magnetic and electromagnetic anomalies caused by underground structures. JEEG, 2, 115–125.

    Google Scholar 

  • Won, I. J., Keiswetter, D. A., Fields, R. A. & Sutton, L. (1996): GEM-2: A new Multifrequency Electromagnetic Sensor. JEEG, 2, 129–137.

    Google Scholar 

  • Buselli, G. & Cameron, M. (1996): Robust statistical methods for reducing sferics noise contaminating transient electromagnetic measurements. Geophysics, 61, 1633–1648.

    Article  Google Scholar 

  • Christiansen; A. V. & Christensen, N. B. (2003): A quantitative appraisal of airborne and ground-based transient electromagnetic (TEM) measurements in Denmark. Geophysics, 68, 523–534.

    Article  Google Scholar 

  • Fitterman, D. V. & Stewart, M. T. (1986): Transient electromagnetic sounding for groundwater. Geophysics, 51, 995–1005.

    Article  Google Scholar 

  • Greinwald, S. (1985): Wechselstromverfahren. In: BENDER, F. (Hrsg.): Angewandte Geowissenschaften, II, Methoden der Angewandten Geophysik und mathematische Verfahren in den Geowissenschaften. Enke, Stuttgart, 352–387.

    Google Scholar 

  • Goldman, M., Tabarovsky, L. & Rabinovich, M. (1994): On the influence of 3-D structures in the interpretation of transient electromagnetic sounding data. Geophysics, 59, 889–901.

    Article  Google Scholar 

  • Hoekstra, P. & Blohm, M. W. (1990): Case histories of time-domain electromagnetic soundings in environmental geophysics — In: Ward, S. H. (ed.): Geotechnical and environmental geophysics, II, SEG, Tulsa, 1–15.

    Google Scholar 

  • Karlik, G. (1995): Eine schnelle und direkte Inversionsmethode für transient elektromagnetische Daten — In: Ebel, A. et al., (Hrsg.), Mitteilungen aus dem Institut für Geophysik und Meteorologie der Universität Köln, 101.

    Google Scholar 

  • Kaufman, A. A. (1989): A paradox in geoelectromagnetism and its resolution, demonstrating the equivalence of frequency and transient domain methods. Geoexploration, 25, 287–317.

    Article  Google Scholar 

  • Mauldin-Mayerle, Carson, N. M. & Zonge, K. L. (1998): Environmental application of high resolution TEM methodes. Proceedings of the 4th Meeting on Environmental and Engineering Geophysical Society. Barcelona, 829–832.

    Google Scholar 

  • McNeill, J. D. & Bosnar, M. (1996): Application of time domain electromagnetic techniques to UXO detection. UXO Forum 1996, Williamsburg, VA.

    Google Scholar 

  • Meju, A. M. (1998): A simple method of transient electromagnetic data analysis. Geophysics, 63, 405–410.

    Article  Google Scholar 

  • Nabighian, M. N. & Macnae, J. C. (1991): Time-domain electromagnetic prospecting methods — In: Nabighian, M. N. (ed.): Electromagnetic methods in applied geophysics, 2A, Society of Exploration Geophysicists, Tulsa, 427–520.

    Google Scholar 

  • Patra, H. P. & Mallick, K. (1980): Geosounding Principles, 2, Time-Varying Geoelectric Soundings. Elsevier, Amsterdam.

    Google Scholar 

  • Snyder, D. D., MacInnes, S., Urquhart, S. & Zonge, K. L. (1999): Possibilities for UXO classification using characteristic modes of the broad-band electromagnetic induction response. Paper presented at New Technologies Conference on the Science and Technology of Unexploded Ordnance (UXO) Removal and Site Remediation. Maui, Hawaii.

    Google Scholar 

  • Spies, B. R. (1989): Depth of Investigation in Electromagnetic Sounding Methods. Geophysics, 54, 872–888.

    Article  Google Scholar 

  • Ward, S. H. & Hohmann, G. W. (1987): Electromagnetic theory for geophysical applications — In: Nabighian, M. N. (ed.): Electromagnetic methods in applied geophysics, 1, SEG, Tulsa, 131–311.

    Google Scholar 

  • Yang, C.-H., Tong, L.-T. & Huang, C.-F. (1999): Combined application of dc and TEM to sea-water intrusion mapping. Geophysics, 64, 417–425.

    Article  Google Scholar 

  • Abdul-Malik, M. M., Myers, J. O. & McFarlane, J. (1984): Model studies of topographic noise in VLF-EM data: accounting for the direction of morphological strike relative to survey line and magnetic field direction. Geoexploration, 23, 217–225.

    Article  Google Scholar 

  • Baker, H. A. & Myers, J. 0. (1980): A topographic correction for VLF-EM profiles based on model studies. Geoexploration, 18, 135–144.

    Article  Google Scholar 

  • Beamish, D. (1998): Three-dimensional modelling of VLF data. Journal of Applied Geophysics, 39, 63–76.

    Article  Google Scholar 

  • Beamish, D. (2000): Quantitative 2D VLF data interpretation. Journal of Applied Geophysics, 45, 33–47.

    Article  Google Scholar 

  • Becken, M. & Pedersen, L. B. (2003): Transformation of VLF anomaly maps into apparent resistivity and phase. Geophysics, 68, 497–505.

    Article  Google Scholar 

  • Benson, A. K., Payne, K. L. & Stubben (1997): Mapping groundwater contamination using dc resistivity and VLF geophysical methods — a case study. Geophysics, 62, 80–86.

    Article  Google Scholar 

  • Belrose, J. S. (ed.) (1982): Medium, long and very long wave propagations (at frequencies less than 3 000 kHz). AGARD Conf. Proc. 305, NATO.

    Google Scholar 

  • Berktold, A., Schleicher, F., Strobl, P., Mathes, P. & Durlesser, H. P. (1992): Möglichkeiten und Grenzen des VLF-R Verfahrens im Ingenieur/Umweltbereich. Münchner Geophysikalische Mitteilungen, 6, 65–88.

    Google Scholar 

  • Berktold, A. (1994): Geophysikalische Erkundungsmethoden, Kap. 5.5. In: Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (Hrsg.): Altlasten I — Erfassung und Bewertung. Weiterbildendes Studium Wasser und Umwelt. Universität Hannover und Ingenieurtechnischer Verband Altlasten e.V.

    Google Scholar 

  • Chouteau, M., Bouchard, K. (1988): Two dimensional terrain correction in magnetotelluric surveys. Geophysics, 53, 854–862.

    Article  Google Scholar 

  • Chouteau, M., Zhang, P. & Chapellier, D. (1996): Computation of apparent resistivity profiles from VLF-EM data using linear filtering. Geophysical Prospecting, 44, 215–232.

    Google Scholar 

  • Donner, F., Göthe, W., Weller, A., Hartsch, J. & Porstendorfer, G. (1987): Beiträge zur VLF-Methode. Freiberger Forschungshefte C 414, Dt. Verlag für Grundstoffindustrie, Leipzig.

    Google Scholar 

  • Eberle, D. (1981): A method of reducing terrain relief effects from VLF-EM data. Geoexploration, 19, 103–114.

    Article  Google Scholar 

  • Eppelbaum, L. V. (1991): Examples of terrain correction in the VLF method in the Caucasian region, USSR. Geoexploration, 28, 67–75.

    Article  Google Scholar 

  • Fischer, G. (1989): A strong topographic valley effect in AMT and VLF-R measurements. Geophys. J., 96, 469–479.

    Google Scholar 

  • Guerin, R., Tabbagh, A. & Andrieux, P. (1994): Field and/or resistivity mapping in MT-VLF and implications for data processing. Geophysics, 59, 1695–1712.

    Article  Google Scholar 

  • Guerin, R., Tabbagh, A., Benderitter, Y. & Andrieux, P. (1994): Invariants for correcting field polarisation effects in MT-VLF resistivity mapping. Journal of Applied Geophysics, 32, 375–383.

    Article  Google Scholar 

  • Hayles, J. G. & Sinha, A. K. (1986): A portable local loop VLF transmitter for geological fracture mapping. Geophys. Prosp., 34, 873–896.

    Google Scholar 

  • Hördt, A., Greinwald, S., Schaumann, S., Tezkan, B. & Hoheisel, A. (2000): Joint 3D interpretation of radiomagnetotelluric (RMT) and transient electromagnetic (TEM) data from an industrial waste deposit in Mellendorf, Germany. European Journal of Environmental and Engineering Geophysics, 4, 151–170.

    Google Scholar 

  • Hollier-Larousse, A., Lagabrielle, R. & Levinian, J. P. (1994): Utilisation de la radiomagnétotellurique pour la réconnaissance en site aquatique. Journal of Applied Geophysics, 31, 72–84.

    Article  Google Scholar 

  • Jiracek, G. R. (1990): Near-surface and topographic distortions in electromagnetic induction. Surveys in geophysics, 11, 163–203.

    Article  Google Scholar 

  • Kaikkonen, P. & Sharma, S. P. (1998): 2-D nonlinear joint inversion of VLF and VLF-R data using simulated annealing. Journal of Applied Geophysics, 39, 155–176.

    Article  Google Scholar 

  • Lagabrielle, R. (1986): Les bases de la radio-magn6totellurique. Revue de l’industrie minérale, mines et carrières, Oct., 373–384.

    Google Scholar 

  • Mackie, R. L., Smith, J. T. & Madden, T. R. (1994): Three-dimensional electromagnetic models using finite difference equations: The magnetotelluric example. Radio Science, 29, 923–935.

    Article  Google Scholar 

  • Mackie, R., Rieven, S. & Rodi, W. (1997): Users manual and software documentation for two dimensional inversion of magnetotelluric data. Department of Geological Sciences, Indiana University.

    Google Scholar 

  • Mcneill, J. D. & Labson, V. F. (1991): Geological mapping using VLF radio fields. In: NABIGHIAN, M. N. (ed): Electromagnetic methods in applied geophysics, 2 (applications), part B, investigations in Geophysics no. 3, Society of Exploration Geophysicists, Tulsa, Oklahoma, 521–640.

    Google Scholar 

  • Müller, I. (1983): Anisotropic properties of rocks detected with electromagnetic VLF (Very Low Frequency). Int.-Symp. Field Measurements in Geomechanics, Zürich, Sept. 1983, Spec. Publ., 273–282.

    Google Scholar 

  • Ogilvy, R. D., Cuadra, A., Jackson, P. D. & Monte, J. L. (1991): Detection of an air-filled drainage gallery by the VLF-resistivity method. Geophys. Prosp., 39, 845–859.

    Google Scholar 

  • Pellerin, L. (2002): Applications of electrical and electromagnetic methods for environmental and geotechnical investigations. Surveys in Geophysics, 23, 101–132.

    Article  Google Scholar 

  • Persson, L. & Pedersen L. B. (2002): The importance of displacement currents in RMT measurements in high resisitivity environments. Journal of Applied Geophysics, 51, 11–20.

    Article  Google Scholar 

  • Pfaffhuber, A. (2001): Development and test of a controlled source MT method in the frequency range 1 to 50 kHz. Diplomarbeit an der Technischen Universität Berlin, Fachbereich für Angewandte Geophysik.

    Google Scholar 

  • Radic, T. & Aschmann, L. (1998): Messung von magnetischen Übertragungsfunktionen im Radiofrequenzbereich (10 kHz bis 1 MHz). Protokoll über das 17. Kolloquium Elektromagnetische Tiefenforschung, Neustadt an der Weinstraße, Hrsg. K. Bahr & A. Junge, 292–298.

    Google Scholar 

  • Radic, T. & Becken, M. (2000a): Widerstandstensor-und Tippermessungen im Radiofrequenzbereich. Protokoll über das 18. Kolloquium Elektromagnetische Tiefenforschung, 20.–24. März in Altenberg, Hrsg. A. Hördt & J. B. Stoll, 8–14.

    Google Scholar 

  • Radic, T. & Becken, M. (2000b): Berechnung der Widerstandsverteilung aus im Radiofrequenzbereich gemessenen magnetischen Übertragungsfunktionen. Protokoll über das 18. Kolloquium Elektromagnetische Tiefenforschung, 20.–24. März in Altenberg, Hrsg. A. Hördt & J. B. Stoll, 274–278.

    Google Scholar 

  • Rohan, P. (1991): Introduction to electromagnetic wave propagation. Artech House, Boston.

    Google Scholar 

  • Rossi, P., De Carvalho-Dill, A., Müller, I. & Aragno, M. (1994): Comparative tracing experiments in a porous aquifer using bacteriophages and fluorescent dye on a test field located at Wilerwald (Switzerland) and simultaneously surveyed in detail on a local scale by radio-magneto-tellury (12–240 kHz). Environmental Geology, 23, 192–200.

    Article  Google Scholar 

  • Roy, J. (1993): Discussion on „Effect of temporal and spatial variations of the primary signal on VLF total-field surveys“ by M. A. Valée, M. Chouteau and G. J. Palacky with replies by authors. Geophysics, 58, 756–757.

    Article  Google Scholar 

  • Sharma, S. P. & Kaikkonen, P. (1998): Two-dimensional nonlinear inversion of VLF-R data usind simulated annealing. Geophys. J. Int., 133, 649–668.

    Article  Google Scholar 

  • Sinha, A. K. (1990): Interpretation of ground VLF-EM data in terms of vertical conductor models. Geoexploration, 26, 213–231.

    Article  Google Scholar 

  • Smith, J. T. & Booker, J. R. (1991): Rapid inversion of two and three dimensional magnetotelluric data. Journal of Geophysical Research, 96, 3905–3922.

    Google Scholar 

  • Stewart, M. & Bretnall, R. (1986): Interpretation of VLF resistivity data for ground water contamination surveys. Ground Water Monitoring Review, 6, 71–75.

    Google Scholar 

  • Stewart, D. C., Anderson, W. L., Grover, T. P. & Labson, V. F. (1994): Shallow subsurface mapping by electromagnetic sounding in the 300 kHz to 30 MHz range — model studies and prototype system assessment. Geophysics, 59, 1201–1210.

    Article  Google Scholar 

  • Tabbagh, A., Benderitter, Y., Andrieux, P., Decriaud, J. P. & Guerin, R. (1991): VLF Resistivity mapping and verticalisation of the electric field. Geophys. Prosp., 39, 1083–1097.

    Google Scholar 

  • Tezkan, B., Goldman, M., Greinwald, S., Hördt, A., Müller, I., Neubauer, F. M. & Zacher, G. (1996): A joint application of radiomagnetotellurics and transient electromagnetics to the investigation of a waste deposit in Cologne, Germany. Journal of Applied Geophysics 34, 199–212.

    Article  Google Scholar 

  • Tezkan, B. (1999): A review of environmental applications of quasi-stationary electromagnetic techniques. Surveys in Geophysics, 20, 279–308.

    Article  Google Scholar 

  • Tezkan, B., Hördt, A. & Gobashy, M. (2000): Two-dimensional radio-magnetotelluric investigation of industrial and domestic waste sites in Germany. Journal of Applied Geophysics, 44, 237–256.

    Article  Google Scholar 

  • Tolstoy, A., Rosenberg, T. J., Inan, U. S. & Carpenter, D. L. (1986): Model predictions of subionospheric VLF signal perturbation-induced ionisation enhancement regions. J. Geophys. Res., 91, 13473–13482.

    Google Scholar 

  • Turberg, P. (1991): Quelques observation sur la prospection géophysique du milieu karstique par électromagnetique „very low frequency-resistivity“ (VLF/R 12 à 240 kHz). Bulletin du Centre d’hydrogéologie de l’Université de Neuchâtel, no. 10.

    Google Scholar 

  • Turberg, P., Müller, I. & Flury, F. (1994): Hydrogeological investigation of porous environments by radio-magnetotelluric-resistivity (RMT-R 12-240 kHz). J. Applied Geophysics, 31, Amsterdam, 133–143.

    Article  Google Scholar 

  • Turberg, P. & Persson, L. (1997): Radiomagnetotelluric measurements for detection of faults and fracture zones in Sweden. 59th EAGE Conference and Technical Exhibition Geneva, Switzerland, 26–30 May 1997. Extended abstract of papers, F-20.

    Google Scholar 

  • Vallée, M. A., Chouteau, M. & Palacky, G. J. (1992a): Effect of temporal and spatial variations of the primary signal on VLF total-field surveys. Geophysics, 57, 97–105.

    Article  Google Scholar 

  • Vallée, M. A., Chouteau, M. & Palacky, G. J. (1992b): Variations of the VLF-EM primary field: analysis of airborne survey data, New Brunswick, Canada. Geophysics, 57, 181–186.

    Article  Google Scholar 

  • Wannamaker, P. E., Stodt, J. A. & Rijo, L. (1986): Two-dimensional topographic response in magnetotellurics modeled using finite elements. Geophysics, 51, 2131–2144.

    Article  Google Scholar 

  • Zacher, G., Tezkan, B. & Müller, I. (1996): Flächenhafte RMT-Messungen auf einer Altlast bei Schongau (Bayern) und deren zweidimensionale Interpretation. 3. DGG-Seminar Umweltgeophysik Neustadt. DGG-Mitteilungen, Sonderband III, 22–29.

    Google Scholar 

  • Zacher, G., Tezkan, B., Neubauer, F. M., Hördt, A. & MÜLLER, I. (1996): Radiomagnetotellurics: a powerful tool for waste-site exploration. European Journal of Environmental and Engineering Geophysics, 1, 135–159.

    Google Scholar 

  • Zonghou, X. (1992): Electromagnetic modeling of 3-D structures by the method of system iteration using integral equations. Geophysics, 57, 1556–1561.

    Article  Google Scholar 

  • Davis, N. S. & De Wiest, R. J. M. (1966): Hydrogeology. Wiley & Sons, New York.

    Google Scholar 

  • Guillen; A. & Legchenko, A. (2002): Inversion of surface nuclear magnetic resonance by an adapted Monte Carlo method applied to water resource characterisation. Journal of Applied Geophysics, 50 (Special issue), 193–205.

    Article  Google Scholar 

  • Hertrich, M. & Yaramanci, U. (2002): Joint inversion of Surface Nuclear Magnetic Resonance and Vertical Electrical Sounding. Journal of Applied Geophysics, 50 (Special issue), 179–191.

    Article  Google Scholar 

  • Hölting, B. (1992): Hydrogeologie. Enke Verlag, Stuttgart.

    Google Scholar 

  • IRIS INSTRUMENTS (2002): NUMIS Proton Magnetic Resonance System, Operation Manual. Orleans, France.

    Google Scholar 

  • Lange; G., Hertrich, M., Knödel, K. & Yaramanci, U. (2000): Surface-NMR in an area with low geomagnetic field and low water content — a case history from Namibia. Proceedings of the 6th Meeting of Environmental and Engineering Geophysics, European Section. September 3–7, 2000, Bochum.

    Google Scholar 

  • Legchenko, A., Beauce, A., Guillen, A., Valla, P. & Bernard, J. (1997): Natural variations in the magnetic resonance signal used in PMR groundwater prospecting from the surface. European Journal of Environmental and Engineering geophysics, 2, 173–190.

    Google Scholar 

  • Legchenko, A. V. & Shushakov O. A. (1998): Inversion of surface NMR data. Geophysics, 63, 75–84.

    Article  Google Scholar 

  • Legchenko, A. V. & Valla, P. (2002): A review of the basic principles for proton magnetic resonance sounding measurements. Journal of Applied Geophysics, 50 (Special issue), 3–19.

    Article  Google Scholar 

  • Legchenko, A., Baltassat, J-M., Beauce, A. & Bernard, J. (2002): Nuclear magnetic resonance as a geophysical tool for hydrogeologists. Journal of Applied Geophysics, 50 (Special issue), 21–46.

    Article  Google Scholar 

  • Legchenko, A., Baltassat, J-M. & Vouillamoz J.-M. (2003): A complex geophysical approach to the problem of groundwater investigation. Proceedings of SAGEEP Annual Meeting, 6–10. April 2003, San Antonio, USA, 739–757.

    Google Scholar 

  • Lieblich, D. A., Legchenko, A., Haeni, F. P. & Portselan, A.A.(1994): Surface nuclear magnetic resonance experiments to detect subsurface water at Haddam Meadows, Connecticut. SAGEEP, 717–736.

    Google Scholar 

  • Mavko, G., Mujkerji, T. & Dvorkin, J. (1998): The rock physics handbook. Cambridge University Press.

    Google Scholar 

  • Mohnke, O. & Yaramanci, U. (2000): Inversion of surface NMR amplitudes and decay times — examination of smooth and block inversion. Proceedings of 6th Meeting of the Environmental and Engineering Geophysics, European Section. September 3–7, 2000, Bochum.

    Google Scholar 

  • Packard, M. & Varian, R. (1954): Free Nuclear Induction in the Earth’s Magnetic Field. Physical Review, 93, 941.

    Google Scholar 

  • Purcell, E. M., Torrey, H. C. & Pound, R. V. (1946): Resonance absorption by nuclear magnetic moment in a solid. Physical Review, 69, 37–38.

    Article  Google Scholar 

  • Schirov, M., Legchenko, A. & Creer, G. (1991): A new direct non-invasive groundwater detection technology for Australia. Exploration Geophysics, 22, 333–338.

    Google Scholar 

  • Schirov, M. & Rojkowski, A.D. (2002): On the accuracy of parameters determination from SNMR measurements. Journal of Applied Geophysics, 50 (Special issue), 21–46.

    Article  Google Scholar 

  • SCHÖN, J. (1996: Handbook of Geophysical Exploration, vol.18: Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Redwood Books, Trowbridge

    Google Scholar 

  • Semenov, A. G., Burshtein, A. I., Pusep, A. Y. & Schirov, M. D.(1988): A device for measurement of underground mineral parameters (in Russian). USSR Patent 1079063.

    Google Scholar 

  • Shushakov, O. A. (1996): Groundwater NMR in conductive water. Geophysics, 61, 998–1006.

    Article  Google Scholar 

  • Trushkin, D. V., Shushakov, O. A. & Legchenko, A. V. (1994): The potential of a noise-reducing antenna for surface NMR groundwater surveys in the Earth’s magnetic field. Geophysical Prospecting, 42, 855–862.

    Google Scholar 

  • Trushkin, D. V., Shushakov, O. A. & Legchenko, A. V. (1995): Surface NMR applied to an electroconductive medium. Geophysical Prospecting, 43, 623–633.

    Google Scholar 

  • Varian, R. H. (1962): Ground liquid prospecting method and apparatus. US Patent 3019383.

    Google Scholar 

  • Weichman, P. B., Lun, D. R., Ritzwoller; M. H. & Lavely, E. M.(2002): Study of surface nuclear magnetic resonance inverse problems. Journal of Applied Geophysics, 50 (Special issue), 47–65.

    Article  Google Scholar 

  • Yaramanci, U., Lange, G. & Knödel, K. (1999): Surface NMR within a geophysical study of an aquifer at Haldensleben (Germany). Geophysical Prospecting, 47, 923–943.

    Article  Google Scholar 

  • Yaramanci, U., Lange, G. & Hertrich, M. (2002): Aquifer characterisation using Surface NMR jointly with other geophysical techniques at the Nauen/Berlin test site. Journal of Applied Geophysics, 50 (Special issue), 47–65.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berktold, A. et al. (2005). Geoelektrik. In: Knödel, K., Krummel, H., Lange, G. (eds) Geophysik., vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26606-2_5

Download citation

Publish with us

Policies and ethics