Skip to main content

Methoden der Stoffwechselkontrolle

  • Chapter
Diabetes bei Kindern und Jugendlichen
  • 1094 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • American Diabetes Association (ADA 2003) Standards of medical care for patients with diabetes mellitus. Diabetes Care 26(Suppl. 1): 33–50

    Google Scholar 

  • Amin R, Ross K, Acerini CL, Edge JA, Warner J, Dunger DB (2003) Hypoglycemia prevalence in prepubertal children with type 1 diabetes on standard insulin regimen: use of continuous glucose monitoring system. Diabetes Care 26: 662–667

    PubMed  Google Scholar 

  • Anderson BJ, Wolf FM, Burkhart MT, Cornell RG, Bacon GE (1989) Effects of peer-group intervention on metabolic control of adolescents with IDDM. Diabetes Care 12: 179–183

    PubMed  CAS  Google Scholar 

  • Arbeitsgemeinschaft für Pädiatrische Diabetologie (AGPD 2004) Diagnostik, Therapie und Verlaufskontrolle des Diabetes mellitus im Kindes-und Jugendalter. In: Scherbaum WA (Hrsg) Evidenzbasierte Diabetes-Leitlinien DDG. Deutsche Diabetes Gesellschaft, Bochum

    Google Scholar 

  • Bougnères PF, Landais P, Mairesse AM et al. (1993) Improvement of diabetic control and acceptability of a three-injection insulin regimen in diabetic adolescents. Diabetes Care 16: 94–102

    PubMed  Google Scholar 

  • Burger W, Weber B, Ender I, Hartmann R (1991) Therapie des Diabetes mellitus im Kindes-und Jugendalter. Monatsschr Kinderheilkd 139: 62–68

    PubMed  CAS  Google Scholar 

  • Caplin NJ, O’Leary P, Bulsara M, Davis EA, Jones TW (2003) Subcutaneous glucose sensor values closely parallel blood glucose during insulin-induced hypoglycaemia. Diabetic Med 20: 238–241

    Article  PubMed  CAS  Google Scholar 

  • Chase HP, Jackson WE, Hoops SL, Cockerham RS, Archer PG, O’Brien D (1989) Glucose control and the renal and retinal complications of insulin-dependent diabetes. JAMA 261: 1155–1160

    Article  PubMed  CAS  Google Scholar 

  • Chase HP, Kim LM, Owen SL, MacKenzie TA, Klingensmith GJ, Murtfeld R, Garg SK (2001) Continuous subcutaneous glucose monitoring in children with type 1 diabetes. Pediatrics 2: 222–226

    Article  Google Scholar 

  • Chase HP, Roberts MD, Wightman C et al. (2003) Use of the GlucoWatch biographer in children with type 1 diabetes. Pediatrics 111 (4 Pt 1): 790–794

    Article  PubMed  Google Scholar 

  • Christensen NK, Terry RD, Wyatt S, Pichert JW, Lorenz RA (1983) Quantitative assessment of dietary adherence in patients with insulin-dependent diabetes mellitus. Diabetes Care 6: 245–250

    PubMed  CAS  Google Scholar 

  • Clegg MD, Schroeder WA (1959) A chromatographie study of the minor components of normal adult human hemoglobin including a comparison of hemoglobin from normal and phenylketonuric individuals. J Am Chem Soc 81: 6065

    Article  CAS  Google Scholar 

  • Dahl-Jørgensen K, Brinchmann-Hansen O, Bangstedt HJ, Hanssen K (1994) Blood glucose control and microvascular complications — what do we do now? Diabetologia 37: 1172–1177

    Article  PubMed  Google Scholar 

  • Dahl-Jørgensen K, Brinchmann-Hansen O, Hanssen K, Ganes T, Kierulf P, Smeland E (1986) effect of near normoglycaemia for two years on progression of early diabetic retinopthy, nephropathy and neuropathy: the Oslo study. BMJ 293: 1195–1199

    Article  PubMed  Google Scholar 

  • Daneman D, Wolfson DH, Becker DJ, Drash AL (1981) Factors affecting glycosylated hemoglobin values in children with insulin dependent diabetes. J Pediatr 99: 847–853

    Article  PubMed  CAS  Google Scholar 

  • Danne T, Deiss D, Hopfenmüller W, von Schütz W, Kordonouri O (2002) Experience with insulin analogues in children. Horm Res 57(Suppl. 1): 46–53

    Article  PubMed  CAS  Google Scholar 

  • Danne T, Lüpke K, Glinda S, von Walter E, von Schütz W, Thölke B (2004) Ist eine Blutzuckertestung aus Unterarm und Daumenballen bei Kindern und Jugendlichen mit Typ-1-Diabetes verlässlich? Monatschr Kinderheilkd, im Druck

    Google Scholar 

  • Danne T, Mortensen HB, Hougard P et al. (2001) Persistent differences among centers over 3 years in glycemic control and hypoglycemia in a study of 3,805 children and adolescents with type 1 diabetes from the Hvidøre Study Group. Diabetes Care 24: 1342–1347

    PubMed  CAS  Google Scholar 

  • D’Antonio JA, Ellis D, Doft BH, Becker D, Drash AL, Kuller LH, Orchard TJ (1989) Diabetes complications and glycemic control. Diabetes Care 12: 694–700

    PubMed  CAS  Google Scholar 

  • DCCT Research Group (1987) Diabetes Control and Complications Trial: results of feasibility study. Diabetes Care 10: 1–19

    Google Scholar 

  • DCCT Research Group (1987) Feasibility of centralized measurements of glycosylated hemoglobin in the Diabetes Control and Complications Trial: A multicenter study. Clin Chem 33: 2267–2271

    Google Scholar 

  • DCCT Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977–986

    Article  Google Scholar 

  • DCCT Research Group (1994) Effect of intensive diabetes treatment on the development and progression of longterm complications in adolescents with insulin-dependent diabetes mellitus. Diabetes Control and Complications Trial. J Pediatr 125: 177–188

    Article  Google Scholar 

  • DCCT Research Group (1995) The relationship of glycemic exposure (HbA1c) to the risk of development and progression of retinopathy in the diabetes control and complications trial. Diabetes 44: 968–983

    Google Scholar 

  • Deiss D, Kordonouri O, Meyer K, Danne T (2001) Long hypoglycaemic periods detected by subcutaneous continuous glucose monitoring in toddlers and pre-school children with diabetes mellitus. Diabet Med 18: 337

    Article  PubMed  CAS  Google Scholar 

  • Dollhofer R, Wieland OH (1979) Glycosylation of serum albumin in diabetic patients. FEBS Lett 103: 282

    Article  Google Scholar 

  • European IDDM Policy Group (1993) Consensus guidelines for the management of insulin-dependent (type I) diabetes. Medicom Europe BV, Bussum, Netherlands

    Google Scholar 

  • Feldt-Rasmussen B, Mathiesen ER, Jensen T, Lauritzen T, Deckert T (1991) Effect of improved metabolic control on loss of kidney function in type 1 (insulin-dependent) diabetic patients: an update of the Steno studies. Diabetologia 34: 164–170

    Article  PubMed  CAS  Google Scholar 

  • Fiedler H (2002) Richtlinien und Empfehlungen für die Laboranalyse zur Diagnose und Behandlung des Diabetes mellitus. Diabetes Stoffwechsel 11: 287–290

    Google Scholar 

  • Furrer J, Gautschi K, Jutz G, Rietz P (1985) Fructosamin — ein neuer Routineparameter in der Diabetes-Kontrolle. Swiss Med 7/11: 69

    Google Scholar 

  • Goldenstein DE, Walker B, Rawlings SS, Hess RL, England JD, Peth SB, Hewett JE (1980) Hemoglobin A1c levels in children and adolescents with diabetes mellitus. Diabetes Care 3: 503–507

    Google Scholar 

  • Gonen B, Rubenstein AH (1978) Hemoglobin A1c and diabetes mellitus. Diabetologia 15: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Hanas R (1998) Insulin-dependent diabetes in children, adolescents and adults. Piara HB Uddevalla Sweden

    Google Scholar 

  • Hanas R (2002) Psychological impact of changing the scale of reported HbA1c results affects metabolic control. Diabetes Care 25: 2110–2111

    PubMed  Google Scholar 

  • Heinemann L, Koschinsky T (2002) Continuous glucose monitoring: an overview of today’s technologies and their clinical applications. Int J Clin Pract (Suppl. 129): 75–79

    Google Scholar 

  • Heinze E, Vetter U, Thon A, Kohne E (1983) Der SD-Score für die Minorkomponenten des HbA1. Dtsch Med Wochenschr 108: 1632–1634

    Article  Google Scholar 

  • Henny J, Schiele F (1990) Altersabhängigkeit, Geschlechtsabhängigkeit und Referenzwerte von Serum-Fructosamin bei Bestimmung mit einer neuen kolorimetrischen Methode. Wien Klin Wochenschr 102: 48

    Google Scholar 

  • Henrichs HR (1984) Indikationen und therapeutische Konsequenz der HbA1-Bestimmung. Lab Med 8: 271

    Google Scholar 

  • Henrichs HR (1990) Diagnostik der diabetischen metabolischen Situation mit Hilfe der Fructosamin-(und HbA1c-) bestimmung. Der Glykierungsquotient Glyc-Qu, das Glykierungsnomogramm. Wien Klin Wochenschr 102–164

    Google Scholar 

  • Henrichs HR, Bonini P, Fielding L et al. (1989) Fructosamin als Routineparameter in der Diabetes-Kontrolle. Multizentrische, klinische Erprobung eines verbesserten Fructosamintests. Akt Endokr Stoffw 10: 96

    Google Scholar 

  • Hoelzel W, Miedema K (1996) Development of a reference system for the international standardization of HbA1c/Glycohemoglobin determinations. J Internat Fed Clin Chem 9: 62–67

    CAS  Google Scholar 

  • Hoey H, Aanstoot HJ, Chiarelli F et al. (2001) Good metabolic control is associated with better quality of life in 2.101 adolescents with type 1 diabetes. Diabetes Care 24: 1923–1928

    PubMed  CAS  Google Scholar 

  • Holl RW, Lang G, Grabert M, Teller W, Heinze E (1995) Spätkomplikationen bei Diabetes mellitus — Beginnt die Prävention schon in der Kindheit? Monatsschr Kinderheilkd 143(Suppl. 1): 12–25

    Google Scholar 

  • Huismann TH, Dozy AM (1962) Studies of the heterogeneity of haemoglobin. V. Binding of haemoglobin with oxidized glutathione. J Lab Clin Med 60: 302–307

    Google Scholar 

  • Hürter P, Lange K (2001) Kinder und Jugendliche mit Diabetes. Medizinischer und psychologischer Ratgeber für Eltern. Springer, Berlin Heidelberg New York Tokio

    Google Scholar 

  • Hürter P, von Schütz W, Lange K (1995) Methoden der Insulinsubstitution bei Kindern und Jugendlichen mit Typ-1-Diabetes. Monatsschr Kinderheilkd 143(Suppl. 1): 39–53

    Google Scholar 

  • International Federation of Clinical Chemistry (IFCC) and Labarotory Medicine (2002) Approved IFCC reference method for the measurement of HbA1c in human blood. Clin Chem Lab Med 40: 78–89

    Article  Google Scholar 

  • International Society for Pediatric and Adolescent Diabetes (ISPAD), International Diabetes Federation World Health Organisation (2000) Consensus guidelines for the management of insulin-dependent (type I) diabetes mellitus (IDDM) in childhood and adolescence. PGF Swift. Publ. Medforum (ed), Zeist, Niederlande. http://www.ispad.org, deutsche Fassung: http://www.disetronic.de/download/0701_B_ISPAD.pdf

    Google Scholar 

  • Jeppsson JO, Kobold U, Barr J et al. (2002) Approved IFCC reference method for the measurement of HbA1c in human blood. Clin Chem Lab Med 40: 78–89

    Article  PubMed  CAS  Google Scholar 

  • Johnson RN, Metcalf PA, Baker JR (1983) Fructosamin: a new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clin Chim Acta 127: 87

    Article  PubMed  CAS  Google Scholar 

  • Joner G, Brinchmann-Hansen O, Torres CG, Hanssen KF (1992) A nationwide cross-sectional study of retinopathy and microalbuminuria in young Norwegian type 1 (insulin-dependent) diabetic patients. Diabetologia 35: 1049–1054

    Article  PubMed  CAS  Google Scholar 

  • Käär ML, Åkerblom HK, Hultunen NP, Knip M, Säkkinen K (1984) Metabolic control in children and adolescents with insulin-dependent diabetes mellitus. Acta Paediatr Scand 73: 102–108

    PubMed  Google Scholar 

  • Kirschenbaum DM (1984) Glycosylation of proteins; its implications in diabetic control and complications. Pediatric Clin Nort Am 31: 611

    CAS  Google Scholar 

  • Koenig RJ, Peterson CM, Jones RL, Sander C, Lehrmann M, Cerami A (1976) The correlations of glucose regulation and hemoglobin A1c in diabetes mellitus. N Engl J Med 295: 417–420

    Article  PubMed  CAS  Google Scholar 

  • Kruse-Jarres JD, Jarausch J, Lehmann P, Vogt LW, Rietz P (1989) A new colorimetric method for the determination of fructosamine. Lab Med 13: 245

    CAS  Google Scholar 

  • Little RR, Rohlfing CL, Wiedmeyer HM, Myers GL, Sacks DB, Goldstein DE (2001) The national glycohemoglobin standardization program: a fife-year progress report. Clin Chem 47: 1985–1992

    PubMed  CAS  Google Scholar 

  • Ludvigsson J, Hanas R (2003) Continuous subcutaneous glucose monitoring improved metabolic control in pediatric patients with type 1 diabetes: a controlled crossover study. Pediatrics 111 (5 Pt 1): 933–938

    Article  PubMed  Google Scholar 

  • Mastrototaro J (1999) The MiniMed Glucose Monitoring System (CGMS). J Pediatr Endocrinol Metab 12(Suppl. 3): 751–757

    PubMed  Google Scholar 

  • Molnar GD, Taylor WF, Ho MM (1972) Day-to-day variation of continuously monitored glycaemia: a further measure of diabetic instability. Diabetologia 8: 342–348

    Article  PubMed  CAS  Google Scholar 

  • Mortensen HB, Robertson KJ, Aanstoot HJ et al. for the Hvidøre Study Group on Childhood Diabetes (1998) Diabetic Medicine 15: 752–759

    Article  PubMed  CAS  Google Scholar 

  • Oyibo SO, Prasad YD, Jackson NJ, Jude EB, Boulton AJ (2002) The relationship between blood glucose excursions and painful diabetic peripheral neuropathy: a pilot study. Diabet Med 19: 870–873

    Article  PubMed  CAS  Google Scholar 

  • Poscia A, Mascini M, Moscone D et al. (2003) A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1). Biosens Bioelectron 18: 891–898

    Article  PubMed  CAS  Google Scholar 

  • Reichard P, Nilsson BY, Rosenquist U (1993) The effect of longterm intensified insulin treatment on the development of microvascular complications of diabetes mellitus. N Engl J Med 329: 304–309

    Article  PubMed  CAS  Google Scholar 

  • Renard E (2002) Implantable closed-loop glucose-sensing and insulin delivery: the future for insulin pump therapy. Curr Opin Pharmacol 2: 708–716

    Article  PubMed  CAS  Google Scholar 

  • Sacks DB, Bruns DE, Goldstein DE, Maclaren NK, McDonald JM, Parrot M (2002) Guidelines and recommendations for labaratory analysis in the diagnosis and management of diabetes mellitus. Diabetes Care 25: 750–786

    Google Scholar 

  • Salardi S, Zucchini S, Santoni R, Ragni L, Gualandi S, Cicognani A, Cacciari E (2002) The glucose area under the profiles obtained with continuous glucose monitoring system relationships with HbA(lc) in pediatric type 1 diabetic patients. Diabetes Care 25: 1840–1844

    PubMed  CAS  Google Scholar 

  • Santiago (1993) Lessons from the Diabetes Control and Complications Trial. Diabetes 42: 1549–1554

    Google Scholar 

  • Service FJ, Molnar GD, Rosevear JW, Ackerman E, Gatewood LC, Taylor WF (1970) Mean amplitude of glycemic excursions, a measure of diabetic instability. Diabetes 19: 644–655

    PubMed  CAS  Google Scholar 

  • Siedel J, Vogt B, Kerscher L, Ziegenhorn J (1988) Serum fructosamine assay: two different colour reagents compared with reference to a HPLC-procedure. Clin Chem 34: 1316

    Google Scholar 

  • Snieder H, Sawtell PA, Ross L, Walker J, Spector TD, Leslie RD (2001) HbA(1c) levels are genetically determined even in type 1 diabetes: evidence from healthy and diabetic twins. Diabetes 50: 2858–2863

    PubMed  CAS  Google Scholar 

  • Stahl M, Jorgensen LGM, Hyltoft-Petersen P, Brandslund I, DeFine-Olivarius N, Borch-Johnsen K (2001) Optimization of oreanalytic conditions and analysis of plasma glucose. 1. Impact of the new WHO and ADA recommendations on diagnosis of diabetes mellitus. Scand J Lab Invest 61: 169–180

    Article  CAS  Google Scholar 

  • Tattersall RB, Lowe J (1981) Diabetes in adolescence. Diabetologia 20: 517–523

    Article  PubMed  CAS  Google Scholar 

  • Trivelli LA, Ramsey HM, Lai HT (1971) Hemoglobin components in patients with diabetes mellitus. N Engl J Med 284: 353–357

    Article  PubMed  CAS  Google Scholar 

  • UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucoe control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352: 837–853

    Article  Google Scholar 

  • Vanelli M, Chiari G, Capuano C (2003) Cost effectiveness of the direct measurement of 3-beta-hydroxybutyrate in the management of diabetic ketoacidosis in children. Diabetes Care 26: 959

    PubMed  Google Scholar 

  • Willms B, Lehmann P (1990) Neuer Fructosamin-Test als Routineparameter in der Diabetes-Kontrolle. Wien Klin Wochenschr 102: 5

    Google Scholar 

  • Wing RR, Lamparski DM, Zaslow S, Betschart J, Siminerio L, Becker D (1985) Frequency and accuracy of self-monitoring of blood glucose in children: Relationship to glycemic control. Diabetes Care 8: 214–218

    PubMed  CAS  Google Scholar 

  • Wolf J, Wolf E, Hürter P (1987) Konventionelle und intensivierte konventionelle Insulintherapie (ICT) bei Kindern und Jugendlichen mit Typ-1-Diabetes. Monatsschr Kinderheilkd 135: 770–774

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

(2005). Methoden der Stoffwechselkontrolle. In: Diabetes bei Kindern und Jugendlichen. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-26602-X_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-26602-X_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21186-0

  • Online ISBN: 978-3-540-26602-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics