Skip to main content

Susceptibility to Fungal Pathogens of Forests Differing in Tree Diversity

  • Chapter
Forest Diversity and Function

Part of the book series: Ecological Studies ((ECOLSTUD,volume 176))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anagnostakis SL (1987) Chestnut blight; the classical problem of an introduced pathogen. Mycology 79:23–27

    Article  Google Scholar 

  • Arnol’bik VM, Smolyak Yu L, Fedorov VN (1990) Effect of root rot on the productivity of Norway spruce stands in Belarus. Lesovedenie i Lesnoe Khozyaistvo 25:95–100

    Google Scholar 

  • Ashton PS, LaFrankie JV (2000) Patterns of tree species diversity among tropical rain forests. In: Kato M (ed) The biology of biodiversity. Springer, Berlin Heidelberg New York, pp 161–177

    Google Scholar 

  • Augspurger CK (1984) Seedling survival of tropical trees: interactions of dispersal distance, light gaps, and pathogens. Ecology 65:1705–1712

    ISI  Google Scholar 

  • Augspurger CK (1990) Spatial patterns of damping-off disease during seedling recruitment in tropical forests. In: Burdon JJ, Leather SR (eds) Pests, pathogens, and plant communities. Blackwell, Oxford, pp 131–144

    Google Scholar 

  • Augspurger CK, Kelly CK (1984) Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling diversity, and light conditions. Oecologia 61:211–217

    Article  ISI  Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sci Total Environ 262:263–286

    Article  PubMed  CAS  Google Scholar 

  • Barthod C (1994) Sylviculture et risques sanitaires dans les forêts tempérées, 1re partie. Rev For Fr 46:609–628

    Google Scholar 

  • Barthod Ch (1995) Sylviculture et risques sanitaires dans les forêsts tempérées, 2e partie. Rev For Fr 47:39–53

    Google Scholar 

  • Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manage 132:39–50

    Article  Google Scholar 

  • Benitez-Malvido J, García-Guzmén G, Kossmann-Ferraz I (1999) Leaf-fungal incidence and herbivory on tree seedlings in tropical rainforest fragments: an experimental study. Biol Cons 91:143–150

    Google Scholar 

  • Blanchard RO, Tattar TA (1997) Field and laboratory guide to tree pathology. Academic Press, San Diego

    Google Scholar 

  • Blaney CS, Kotanen PM (2001) Effects of fungal pathogens on seeds of native and exotic plants: a test using congeneric pairs. J Appl Ecol 38:1104–1113

    Article  Google Scholar 

  • Boudreau MA, Mundt CC (1997) Ecological approaches to disease control. In: Rechcigl J, Rechcigl N (eds) Environmentally safe approaches to disease control. CRC Press, Boca Raton, pp 33–62

    Google Scholar 

  • Brasier CM (1991) Ophiostoma-novo-ulmi sp-nov, causative agent of current Dutch elm disease pandemics. Mycopathologia 115:151–161

    Article  ISI  Google Scholar 

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization. Bioscience 51:123–133

    ISI  Google Scholar 

  • Burdon JJ (1987) Diseases and plant population biology. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Burdon JJ (1991) Fungal pathogens as selective forces in plant populations and communities. Aust J Ecol 16:423–432

    Google Scholar 

  • Burdon JJ (1993) The structure of pathogen populations in natural plant communities. Annu Rev Phytopathol 31:305–323

    Article  Google Scholar 

  • Burdon JJ (1994) The role of parasites in plant populations and communities. In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin Heidelberg New York, pp 165–179

    Google Scholar 

  • Burdon JJ, Chilvers GA (1982) Host density as a factor in plant disease ecology. Annu Rev Phytopathol 20:143–166

    Article  Google Scholar 

  • Burdon JJ, Wennström A, Ericson L, Müller WJ, Morton R (1992) Density-dependent mortality in Pinus sylvestris caused by the snow blight pathogen Phacidium infestans. Oecologia 90:74–79

    Article  ISI  Google Scholar 

  • Burdon JJ, Wennström A, Müller WJ, Ericson L (1994) Spatial patterning in young stands of Pinus sylvestris in relation to mortality caused by the snow blight pathogen Phacidium infestans. Oikos 71:130–136

    ISI  Google Scholar 

  • Burdon RD (2001a) Genetic diversity and disease resistance: some considerations for research, breeding, and deployment. Can J For Res 31:596–606

    Article  Google Scholar 

  • Burdon RD (2001b) Pinus radiata. In: Last FT (ed) Tree crop ecosystems. Elsevier, Amsterdam, pp 99–161

    Google Scholar 

  • Burdon RD (2002) Pinus radiata D.Don. Forestry compendium (compiled from) Pines of Silvicultural Importance. CABI, Wallingford, pp 359–379

    Google Scholar 

  • Burschel P, El Kateb H, Mosandl R (1992) Experiments in mixed mountain forests in Bavaria. In: Kelty MJ, Larson BC, Oliver CD (eds) The ecology and silviculture of mixed-species forests. Kluwer, Dordrecht, pp 183–215

    Google Scholar 

  • Castello JD, Leopold DJ, Smallidge PJ (1995) Pathogens, patterns, and processes in forest ecosystems. Bioscience 45:16–24

    ISI  Google Scholar 

  • Chave J, Muller-Landau HC, Levin SA (2002) Comparing classical community models: theoretical consequences for patterns of diversity. Am Nat 159:1–23

    Article  PubMed  Google Scholar 

  • Chou CKS (1981) Monoculture, species diversification and disease hazards in forestry. NZ J For 26:20–36

    Google Scholar 

  • Chou CKS (1991) Perspectives of disease threat in large-scale Pinus radiata monoculture — the New Zealand experience. Eur J For Pathol 21:71–81

    Google Scholar 

  • Clay K, Kover PX (1996) The red queen hypothesis and plant/pathogen interactions. Annu Rev Phytopathol 34:29–50

    Article  PubMed  CAS  Google Scholar 

  • Coakley SM, Scherm H, Chakraborty S (1999) Climate change and plant disease management. Annu Rev Phytopathol 37:399–426

    Article  PubMed  CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    ISI  PubMed  CAS  Google Scholar 

  • Courtecuisse R (2001) Current trends and perspectives for the global conservation of fungi. In: Moore D, Nauta MM, Evans SE, Rotheroe M (eds) Fungal conservation. Issues and solutions. Cambridge Univ Press, Cambridge, pp 7–18

    Google Scholar 

  • Dìaz S, Cabido M (2001) Vive la différence: plant functional diversity matters to ecosystem processes. Tr Ecol Evol 16:646–655

    Google Scholar 

  • Dickman A (1992) Plant pathogens and long-term ecosystem changes. In: Carroll GC, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem. Dekker, New York, pp 499–520

    Google Scholar 

  • Dinoor A, Eshed N (1984) The role and importance of pathogens in natural plant communities. Annu Rev Phytopathol 22:443–466

    Article  Google Scholar 

  • Dobson AP, Crawley M (1994) Pathogens and the structure of plant communities. Tr Ecol Evol 9:393–398

    Google Scholar 

  • Dobson AP, Grenfell BT (1995) Introduction. In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge Univ Press, Cambridge, pp 1–19

    Google Scholar 

  • Eble GJ (1998) The role of development in evolutionary radiations. In: McKinney ML, Drake JA (eds) Biodiversity dynamics. Turnover of populations, taxa and communities. Columbia Univ Press, New York, pp 132–161

    Google Scholar 

  • Edmonds RL, Agee JK, Gara RI (2000) Forest health and protection. McGraw-Hill, Boston

    Google Scholar 

  • Ehrlich PR (1994) Foreword. Biodiversity and ecosystem function: need we know more? In: Schulze E-D, Mooney HA (eds) Biodiversity and ecosystem function. Springer, Berlin Heidelberg New York, pp vii–xi

    Google Scholar 

  • Enerstvedt LI, Venn K (1979) Decay in mature Picea abies (L.) Karst. stands. A study on clear-cuttings in Ovre Eiker, Norway. Rep Norw For Res Inst 35:241–264

    Google Scholar 

  • Engelmark O, Sjöberg K, Andersson B, Rosvall O, Ågren GI, Baker WL, Barklund P, Björkman C, Despain DG, Elfving B, Ennos RA, Karlman M, Knecht MF, Knight DH, Ledgard NJ, Lindelöw Å, Nilsson C, Peterken GF, Sörlin S, Sykes MT (2001) Ecological effects and management aspects of an exotic tree species: the case of lodgepole pine in Sweden. For Ecol Manage 141:3–13

    Article  Google Scholar 

  • Ennos RA (2001) The introduction of lodgepole pine as a major forest crop in Sweden: implications for host-pathogen evolution. For Ecol Manage 141:85–96

    Article  Google Scholar 

  • Evans J (1992) Plantation forestry in the tropics, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Finckh MR, Wolfe MS (1998) Diversification strategies. In: Jones DG (ed) The epidemiology of plant diseases. Kluwer, Dordrecht, pp 231–239

    Google Scholar 

  • Fitter AH (2001) Specificity, links and networks in the control of diversity in plant and microbial communities. In: Press MC, Huntley NJ, Levin S (eds) Ecology: achievement and challenge. Blackwell Science, Oxford, pp 95–114

    Google Scholar 

  • Florence RG (1996) Ecology and silviculture of eucalypt forests. CSIRO, Collingwood, Victoria, Australia

    Google Scholar 

  • Flury P (1926) Über Zuwachs und Ertrag reiner und gemischter Bestände. Schweiz Z Forstwes 77:337–342

    Google Scholar 

  • García-Guzmén G, Dirzo R (2001) Patterns of leaf-pathogen infection in the understorey of a Mexican rain forest: incidence, spatiotemporal variation, and mechanisms of infection. Am J Bot 88:634–645

    Google Scholar 

  • Garrett KA, Mundt CC (1999) Epidemiology in mixed host populations. Phytopathology 89:984–990

    ISI  PubMed  CAS  Google Scholar 

  • Gerlach JP, Reich PB, Puettman K, Baker T (1997) Species, diversity, and density affect tree seedling mortality from Armillaria root rot. Can J For Res 27:1509–1512

    Article  Google Scholar 

  • Gibson IAS (1975) Impact and control of Dothistroma blight of Pines. Eur J For Pathol 4:89–100

    Google Scholar 

  • Gibson IAS, Jones T (1977) Monoculture as the origin of major forest pests and diseases. In: Cherrett JM, Sagar GR (eds) Origins of pests, parasite, disease and weed problems. Blackwell, Oxford, pp 139–161

    Google Scholar 

  • Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems. Annu Rev Phytopathol 40:13–43

    Article  PubMed  CAS  Google Scholar 

  • Gilbert GS, de Steven D (1996) A canker disease of seedlings and saplings of Tetragastris panamensis (Burseraceae) caused by Botryosphaeia dothidea in a lowland tropical forest. Plant Dis 80:684–687

    Article  ISI  Google Scholar 

  • Gilbert GS, Hubbell SP (1996) Plant diseases and the conservation of tropical forests. Bioscience 46:98–106

    ISI  Google Scholar 

  • Gilbert GS, Hubbell SP, Foster RB (1994) Density and distance-to-adult effects of a canker disease of trees in a moist tropical forest. Oecologia 98:100–108

    Article  ISI  Google Scholar 

  • Gilbert GS, Mejia-Chang N, Rojas E (2002) Fungal diversity and plant disease in mangrove forests: salt excretion as a possible defense mechanism. Oecologia 132:278–285

    Article  ISI  Google Scholar 

  • Glatzel G (1991) The impact of historic land-use and modern forestry on nutrient relations of Central-European forest ecosystems. Fert Res 27:1–8

    Article  Google Scholar 

  • Graber D (1994) Die Fichtenkernfäule in der Nordschweiz: Schadenausmass, ökologische Zusammenhänge und waldbauliche Massnahmen. Schweiz Z Forstwes 145:905–925

    Google Scholar 

  • Gregory SC, Rishbeth J, Shaw CG III (1991) Pathogenicity and virulence. In: Shaw CG III, Kile GA (eds) Armillaria root disease. Agriculture handbook no 691. USDA, Washington, DC, pp 76–87

    Google Scholar 

  • Greig BJW (1962) Fomes annosus (Fr.) Cke. and other root-rotting fungi in conifers on ex-hardwood sites. Forestry 35:164–182

    Google Scholar 

  • Greig BJW, Gibbs JN, Pratt JE (2001) Experiments on the susceptibility of conifers to Heterobasidion annosum in Great Britain. For Pathol 31:219–228

    Google Scholar 

  • Grogan RG (1987) The relation of art and science of plant pathology for disease-control. Annu Rev Phytopathol 25:1–8

    Article  Google Scholar 

  • Haack RA, Byler JW (1993) Insects & pathogens — regulators of forest ecosystems. J For 91(9):32–37

    Google Scholar 

  • Hagle SK, Shaw CG III (1991) Avoiding and reducing losses from Armillaria root disease. In: Shaw CG III, Kile GA (eds) Armillaria root disease. Agriculture handbook no 691. USDA, Washington, DC, pp 157–173

    Google Scholar 

  • Hamilton WS (1980) Sex versus non-sex versus parasite. Oikos 35:282–290

    ISI  Google Scholar 

  • Han ZM, Yin TM, Li CD, Huang MR, Wu RL (2000) Host effect on genetic variation of Marssonina brunnea pathogenic to poplars. Theor Appl Genet 100:614–620

    Article  CAS  Google Scholar 

  • Hansen A, Rotella J (1999) Abiotic factors. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems. Cambridge Univ Press, Cambridge, pp 161–209

    Google Scholar 

  • Hansen EM (1999) Disease and diversity in forest ecosystems. Australas Plant Pathol 28:313–319

    Google Scholar 

  • Hansen EM, Goheen EM (2000) Phellinus weirii and other native root pathogens as determinants of forest structure and process in Western North America. Annu Rev Phytopathol 38:515–539

    Article  PubMed  CAS  Google Scholar 

  • Harper JL (1977) The population biology of plants. Academic Press, London

    Google Scholar 

  • Harper JL (1990) Pests, pathogens, and plant communities: an introduction. In: Burdon JJ, Leather SR (eds) Pests, pathogens, and plant communities. Blackwell, Oxford, pp 3–14

    Google Scholar 

  • Hartley MJ (2002) Rationale and methods for conserving biodiversity in plantation forests. For Ecol Manage 155:81–95

    Article  Google Scholar 

  • Hatcher PE (1995) 3-way interactions between plant-pathogenic fungi, herbivorous insects and their host plants. Biol Rev 70:639–694

    Google Scholar 

  • Heil M (2001) Induced systemic resistance (ISR) against pathogens — a promising field for ecological research. Perspect Plant Ecol 4:65–79

    Article  Google Scholar 

  • Hellgren M (1995) Comparison of Gremmeniella abietina isolates from Pinus sylvestris and Pinus contorta in terms of conidial morphology and host colonization. Eur J For Pathol 25:159–168

    Google Scholar 

  • Hellgren M, Barklund P (1992) Studies of the life cycle of Gremmeniella abietina on Scots pine in southern Sweden. Eur J For Pathol 22:300–311

    Google Scholar 

  • Hellgren M, Högberg N (1995) Ecotypic variation of Gremmeniella abietina in Northern Europe: disease patterns reflected by DNA variation. Can J Bot 73:1531–1539

    Google Scholar 

  • Hellgren M, Stenlid J (1997) Diseases of conifers caused by Gremmeniella abietina. In: Hansen EM, Lewis K (eds) Compendium of forest pathology. APS Press, St Paul, pp 43–45

    Google Scholar 

  • Hemstrom MA (2001) Vegetative patterns, disturbances, and forest health in eastern Oregon and Washington. Northwest Sci 75:91–109

    ISI  Google Scholar 

  • Hepting GH (1974) Death of the American chestnut. J For Hist 18:60–67

    Google Scholar 

  • Heybroek HM (1982) Monoculture versus mixture: interactions between susceptible and resistant trees in a mixed stand. In: Heybroek HM, Stephan BR, von Weissenberg K (eds) Resistance to disease and pests in forest trees. Pudoc, Wageningen, pp 326–341

    Google Scholar 

  • Hoff RJ, Hagle S (1990) Diseases of whitebark pine with special emphasis on white pine blister rust. In: Schmidt WC, McDonald KJ (eds) Proceedings — Symposium on Whitebark pine ecosystems: ecology and management of a high-mountain resource. INT-GTR 270. USDA FS, Ogden, UT, pp 179–190

    Google Scholar 

  • Hoff RJ, McDonald GI (1993) Variation of virulence of white pine blister rust. Eur J For Pathol 23:103–109

    Google Scholar 

  • Hogg EH, Brandt JP, Kochtubajda B (2002) Growth and dieback of aspen forests in northwestern Alberta, Canada, in relation to climate and insects. Can J For Res 32(5):823–832

    Article  Google Scholar 

  • Holah JC, Wilson MV, Hansen EM (1997) Impacts of a native root-rotting pathogen on successional development of old-growth Douglas fir forests. Oecologia 111:429–433

    Article  ISI  Google Scholar 

  • Holdenrieder O (1991) Der Forstschutz — Objekte, Probleme, Strategien. Schweiz Z Forstwes 142:795–807

    Google Scholar 

  • Holling CS, Meffe GK (1996) Command and control and the pathology of natural resource management. Conserv Biol 10:328–337

    Article  Google Scholar 

  • Hood IA, Redfern DB, Kile GA (1991) Armillaria in planted hosts. In: Shaw CG III, Kile GA (eds) Armillaria root disease. Agriculture handbook no 691. USDA, Washington, DC, pp 88–101

    Google Scholar 

  • Huang HW, Dane F, Kubisiak TL (1998) Allozyme and RAPD analysis of the genetic diversity and geographic variation in wild populations of the American chestnut (Fagaceae). Am J Bot 85:1013–1021

    Google Scholar 

  • Hunt RS, van Sickle GA (1984) Variation in susceptibility to sweet fern rust among Pinus contorta and P. banksiana. Can J For Res 14:672–675

    Google Scholar 

  • Hunter T, Peacock L, Turner H, Brain P (2002) Effect of plantation design on stem-infecting form of rust in willow biomass coppice. For Pathol 32:87–97

    Google Scholar 

  • Huse KJ, Solheim H, Venn K (1994) Stump inventory of root and butt rots in Norway spruce cut in 1992. Rapport-fra-Skogforsk, no 23, 26 pp

    Google Scholar 

  • Ingersoll CA, Wilson MV, Thies WG (1996) Effects of Phellinus weirii gaps on early successional vegetation following timber harvest. Can J For Res 26:322–326

    Article  Google Scholar 

  • Ingram DS (1999) Biodiversity, plant pathogens and conservation. Plant Pathol 48:433–442

    Article  ISI  Google Scholar 

  • Janzen DH (1970) Herbivores and the number of tree species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Jarosz AM, Davelos AL (1995) Effects of disease in wild plant populations and the evolution of pathogen aggressiveness. New Phytol 129:371–387

    ISI  Google Scholar 

  • Jeger MJ (1999) Improved understanding of dispersal in crop pest disease management: current status and future directions. Agric For Meteorol 97:331–349

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1997) Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946–1957

    ISI  Google Scholar 

  • Josephson Weddell B (2002) Conserving living natural resources in the context of a changing world. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Karlman M (2001) Risks associated with the introduction of Pinus contorta in northern Sweden with respect to pathogens. For Ecol Manage 141:97–105

    Article  Google Scholar 

  • Kató F (1967) Auftreten und Bedeutung des Wurzelschwammes (Fomes annosus [Fr.] Cooke) in Fichtenbeständen Niedersachsens. Schr Forstl Fak Univ Göttingen 39:33–120

    Google Scholar 

  • Kendall KC, Keane RE (2001) Whitebark pine decline: infection,mortality, and population trends. In: Tomback DF, Arno SF, Keane RE (eds) Whitebark pine communities. Island Press, Washington, DC, pp 221–242

    Google Scholar 

  • Kile GA (2000) Woody root rots of eucalypts. In: Keane PJ, Kile GA, Podger FD, Brown NB (eds) Diseases and pathogens of eucalypts. CSIRO, Collingwood,Victoria,Australia, pp 293–306

    Google Scholar 

  • Kile GA, McDonald GI, Byler JW (1991) Disease in natural forests. In: Shaw CG III, Kile GA (eds) Armillaria root disease. Agriculture handbook no 691. USDA, Washington, DC, pp 102–121

    Google Scholar 

  • Kimmey JW (1938) Susceptibility of Ribes to Cronartium ribicola in the West. J For 36:312–320

    Google Scholar 

  • Kimmins JP (1997a) Balancing act. Environmental issues in forestry, 2nd edn. UBC Press, Vancouver

    Google Scholar 

  • Kimmins JP (1997b) Biodiversity and its relationship to ecosystem health and integrity. For Chron 73:229–232

    Google Scholar 

  • Kirchner JW, Roy BA (2000) Evolutionary implications of host-pathogen specificity: the fitness consequences of host life history traits. Evol Ecol 14:665–692

    Article  Google Scholar 

  • Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  PubMed  CAS  ISI  Google Scholar 

  • Knops JMH, Tilman D, Haddad NM, Naeem S, Mitchell CE, Haarstad J, Ritchie ME, Howe KM, Reich PB, Siemann E, Groth J (1999) Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundances and diversity. Ecol Lett 2:286–293

    Article  Google Scholar 

  • Korhonen K, Capretti P, Karjalainen R, Stenlid J (1998a) Distribution of Heterobasidion annosum intersterility groups in Europe. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum. Biology, ecology, impact and control. CABI, Wallingford, pp 93–104

    Google Scholar 

  • Korhonen K, Delatour C, Greig BJW, Schönhar S (1998b) Silvicultural control. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum. Biology, ecology, impact and control. CABI, Wallingford, pp 283–313

    Google Scholar 

  • Korotkov GP (1978) Heterobasidion annosum infection in spruce/fir stands. Lesnoe Khozyaistvo 6:75–78

    Google Scholar 

  • Kowalski S (1980) FrCylindrocarpon destructans (Zins.) Scholt., sprawca zamierania samosiequ jodly (Abies alba Mill.) w niektorych drzewostanach gorskich poludniowej polski. Acta Agrar Silv Ser Silv 19:57–73

    Google Scholar 

  • Kranz J (1990) Fungal diseases in multispecies plant communities. New Phytol 116:383–405

    ISI  Google Scholar 

  • Lacy GH, Stromberg EL (2001) Susceptibility. In: Maloy OC, Murray TD (eds) Encyclopedia of plant pathology, vol II. Wiley, New York

    Google Scholar 

  • Lambers JHR, Clark JS, Beckage B (2002) Density-dependent mortality and the latitudinal gradient in species diversity. Nature 417:732–735

    PubMed  ISI  Google Scholar 

  • Lewis KJ, Lindgren BS (1999) Influence of decay fungi on species composition and size class structure in mature Picea glauca x engelmannii and Abies lasiocarpa in subboreal forests of central British Columbia. For Ecol Manage 123(2/3):135–143

    Google Scholar 

  • Lewis KJ, Lindgren BS (2000) A conceptual model of biotic disturbance ecology in the central interior of B.C.: how forest management can turn Dr.Jekyll into Mr.Hyde. For Chron 76:433–443

    Google Scholar 

  • Lindén M, Vollbrecht G (2002) Sensitivity of Picea abies to butt rot in pure stands and in mixed stands with Pinus sylvestris in southern Sweden. Silva Fenn 36:767–778

    Google Scholar 

  • Lively CM (2001) Parasite-host interactions. In: Fox CW, Roff DA, Fairbairn DJ (eds) Evolutionary ecology. Concepts and case studies. Oxford Univ Press, Oxford, pp 290–302

    Google Scholar 

  • Lonsdale D, Gibbs JN (1995) Effects of climate change on fungal diseases of trees. In: Frankland JE, Magan N, Gadd GM (eds) Fungi and environmental change. British Mycological Society Symp vol XX, pp 1–19

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  ISI  Google Scholar 

  • Lundquist JE (1995) Pest interactions and canopy gaps in Ponderosa pine stands in the Black Hills, South-Dakota, USA. For Ecol Manage 74:37–48

    Google Scholar 

  • Lygis V, Vasiliauskas R, Stenlid J, Vasiliauskas A (2001) Preliminary evaluation of Scots pine plantations “resistant” to Heterobasidion annosum. In: Laflamme G, Bérubé JA, Bussières G (eds) Proceedings of the 10th International conference on root and butt rots of forest trees, Québec City, Canada, September 16-22,2001. Laurentian Forestry Centre, Sainte-Foy, Information Report LAU-X-126, pp 362–365

    Google Scholar 

  • Malmström CM, Raffa KF (2000) Biotic disturbance agents in the boreal forest: considerations for vegetation change models. Global Change Biol 6 [Suppl 1]:35–48

    Google Scholar 

  • Maloney PE, Rizzo DM (2002) Pathogens and insects in a pristine forest ecosystem: the Sierra San Pedro Martir, Baja,Mexico. Can J For Res 32:448–457

    Article  Google Scholar 

  • Mattila U, Jalkanen R, Nikula A (2001) The effects of forest structure and site characteristics on probability of pine twisting rust damage in young Scots pine stands. For Ecol Manage 142:89–97

    Article  Google Scholar 

  • May TW, Simpson JA (1997) Fungal diversity and ecology in eucalypt ecosystems. In: Williams JE, Woinarski JCZ (eds) Eucalypt ecology. Individuals to ecosystems. Cambridge Univ Press, Cambridge, pp 246–277

    Google Scholar 

  • McCann KS (2002) The diversity-stability debate. Nature 405:228–233

    Google Scholar 

  • McCauley KJ, Cook SA (1980) Phellinus weirii infestation of two mountain hemlock forests in the Oregon Cascades. For Sci 26:23–29

    Google Scholar 

  • McCracken AR, Dawson WM (1997) Growing clonal mixtures of willow to reduce effect of Melampsora epitea var. epitea. Eur J For Pathol 27:319–329

    Google Scholar 

  • McCracken AR, Dawson WM (1998) Short rotation coppice willow in Northern Ireland since 1973: development of the use of mixtures in the control of foliar rust (Melampsora spp.). Eur J For Pathol 28:241–250

    Google Scholar 

  • McCracken AR, Dawson WM, Watson S, Allen CY (2000) Pathotype composition in Melampsora epitea populations occurring on willow (Salix) grown in mixed and monoculture plantations. Eur J Plant Pathol 106:879–886

    Article  Google Scholar 

  • McCracken AR, Dawson WM, Bowden G (2001) Yield responses of willow (Salix) grown in mixtures in short rotation coppice (SRC). Biomass Bioenerg 21:311–319

    Article  ISI  Google Scholar 

  • McDonald BA, Bellamy BK, Zhan J, Appel DN (1998) The effect of an oak wilt epidemic on the genetic structure of a Texas live oak population. Can J Bot 76:1900–1907

    Article  Google Scholar 

  • McDougall KL, Hobbs RJ, Hardy GES (2002) Vegetation of Phytophthora cinnamomi-infested and adjoining sites in the northern Jarrah (Eucalyptus marginata) forest of Western Australia. Aust J Bot 50:277–288

    Google Scholar 

  • Mitchell CE, Tilman D, Groth JV (2002) Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology 83:1713–1726

    Article  ISI  Google Scholar 

  • Morrison DJ, Wallis GW, Weir LC (1988) Control of Armillaria and Phellinus root diseases: 20-year results from the Skimikin stump removal experiment. Canadian Forestry Service, Pacific Forestry Centre, Victoria, Information Report BC-X-302

    Google Scholar 

  • Mosandl R, Aas G (1986) Vorkommen und Bedeutung von Keimlingspilzen im Bergmischwald der ostbayerischen Kalkalpen. Forst Holzwirt 41:471–475

    Google Scholar 

  • Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40:381–410

    Article  PubMed  CAS  Google Scholar 

  • Murray DIL (1987) Rhizosphere microorganisms from the Jarrah forest of Western Australia and their effect on vegetative growth and sporulation in Phytophthora cinnamomi Rands. Aust J Bot 35:567–580

    Google Scholar 

  • Naeem S (2002a) Biodiversity equals instability? Nature 416:23–24

    Article  PubMed  CAS  ISI  Google Scholar 

  • Naeem S (2002b) Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83:1537–1552

    ISI  Google Scholar 

  • Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1995) Empirical evidence that declining species diversity may alter the performance of terrestrial ecosystems. Philos Trans R Soc Lond 347:249–262

    Google Scholar 

  • Naeem S, Loreau M, Inchausti P (2002) Biodiversity and ecosystem functioning: the emergence of a synthetic ecological framework. In: Loreau M, Naeem S, Inchausti P (eds) Biodiversity and ecosystem functioning — synthesis and perspectives. Oxford Univ Press, Oxford, pp 3–11

    Google Scholar 

  • Newhook FJ, Podger FD (1972) The role of Phytophthora cinnamomi in Australian and New Zealand forests. Annu Rev Phytopathol 10:299–326

    Article  Google Scholar 

  • Newman EI (2000) Applied ecology and environmental management, 2nd edn. Blackwell Science, Oxford

    Google Scholar 

  • Oak SW (2002) Native diseases and insects that impact oaks. In: McShea WJ, Healy WM (eds) Oak forest ecosystems. Ecology and management for wildlife. Johns Hopkins University Press, Baltimore, pp 80–99

    Google Scholar 

  • Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404:278–281

    Article  PubMed  CAS  ISI  Google Scholar 

  • Peace TR (1938) Butt rot of conifers in Great Britain. Q J For 32:81–104

    Google Scholar 

  • Peacock L, Hunter T, Turner H, Brain P (2001) Does host genotype diversity affect the distribution of insect and disease damage in willow cropping systems? J Appl Ecol 38:1070–1081

    Article  Google Scholar 

  • Pei MH, Royle DJ, Hunter T (1996) Pathogenic specialization in Melampsora var. epitea on Salix. Plant Pathol 45:679–690

    Article  ISI  Google Scholar 

  • Perkins TE, Matlack GR (2002) Human-generated pattern in commercial forests of southern Mississippi and consequences for the spread of pests and pathogens. For Ecol Manage 157:143–154

    Article  Google Scholar 

  • Perry DA (1998) The scientific basis of forestry. Annu Rev Ecol Syst 29:435–466

    Article  Google Scholar 

  • Perry DA, Amaranthus MP (1997) Disturbance, recovery, and stability. In: Kohm KA, Franklin JF (eds) Creating a forestry for the 21st century. The science of ecosystem management. Island Press, Washington,DC, pp 31–56

    Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5(3):402–411

    Article  Google Scholar 

  • Pfisterer AB, Schmid B (2002) Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416:84–86

    Article  PubMed  CAS  ISI  Google Scholar 

  • Piri T, Korhonen K (2001) Infection of advance regeneration of Norway spruce by Heterobasidion parviporum. Can J For Res 31:937–942

    Article  Google Scholar 

  • Piri T, Korhonen K, Sairanen A (1990) Occurrence of Heterobasidion annosum in pure and mixed spruce stands in southern Finland. Scand J For Res 5:113–125

    Google Scholar 

  • Pratt JE (1979a) Fomes annosus butt rot of Sitka spruce. I. Observations on the development of butt-rot in individual trees and stands. Forestry 52:11–29

    ISI  Google Scholar 

  • Pratt JE (1979b) Fomes annosus butt rot of Sitka spruce: III. Losses in yield and value of timber in diseased trees and stands. Forestry 52:113–127

    ISI  Google Scholar 

  • Prell HH, Day PR (2001) Plant-fungal pathogen interaction. A classical and molecular view. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Puddu A, Luisi N, Capretti P, Santini A (2003) Environmental factors related to damage by Heterobasidion abietinum in Abies alba forests in southern Italy. For Ecol Manage 180(1-3):37–44

    Google Scholar 

  • Rajora OP, Mosseler A (2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica 118:197–212

    Article  ISI  Google Scholar 

  • Ramstedt M (1999) Rust disease on willows — virulence variation and resistance breeding strategies. For Ecol Manage 121:101–111

    Article  Google Scholar 

  • Ramstedt M, Hurtado S, Åström B (2002) Pathotypes of Melamspora rust on Salix in short-rotation forestry plantations. Plant Pathol 51:185–190

    Article  ISI  Google Scholar 

  • Rao MR, Nair PKR, Ong CK (1997) Biophysical interactions in tropical agroforestry systems. Agroforest Syst 38:3–50

    Article  Google Scholar 

  • Redfern DB, Pratt JE, Gregory SC, MacAskill GA (2001) Natural infection of Sitka spruce thinning stumps in Britain by spores of Heterobasidion annosum and long-term survival of the fungus. Forestry 74:53–71

    Article  ISI  Google Scholar 

  • Rennerfelt E (1946) Om rotrötan (Polyporus annosus Fr.) I Sverige. Dess utbredning och sätt att uppträda. Meddel. Statens Skogsforskningsinst 35(8), 88 pp

    Google Scholar 

  • Roll-Hansen F (1989) Phacidium infestans. A literature review. Eur J For Pathol 19:237–250

    Google Scholar 

  • Roy BA, Kirchner JW (2000) Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54:51–63

    PubMed  CAS  ISI  Google Scholar 

  • Roy BA, Kirchner JW, Christian CE, Rose LE (2000) High disease incidence and apparent disease tolerance in a North American Great Basin plant community. Evol Ecol 14:421–438

    Article  Google Scholar 

  • Schläpfer F, Schmid B (1999) Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results. Ecol Appl 9:893–912

    Google Scholar 

  • Schmidt RA (1978) Diseases in forest ecosystems: the importance of functional diversity. In: Horsfall JG, Cowling EB (eds) Plant disease. An advanced treatise, vol II. How disease develops in populations. Academic Press, New York, pp 287–315

    Google Scholar 

  • Schowalter T, Hansen E, Molina R, Zhang Y (1997) Integrating the ecological roles of phytophagous insects, plant pathogens, and mycorrhizae in managed forests. In: Kohm KA, Franklin JF (eds) Creating a forestry for the 21st century. The science of ecosystem management. Island Press, Washington,DC, pp 171–189

    Google Scholar 

  • Schwadron PA (1995) Distribution and persistence of American chestnut sprouts, Castanea dentata [Marsh] Borkh., in northeastern Ohio woodlands. Ohio J Sci 95:281–288

    Google Scholar 

  • Shea SR, McCormick J, Portlock CC (1979) The effects of fires on regeneration of leguminous species in the northern Jarrah (Eucalyptus marginata) forest of Western Australia. Aust J Ecol 4:195–105

    Google Scholar 

  • Shearer BL, Dillon M (1995) Susceptibility of plant-species in Eucalyptus marginata forest to infection by Phytophthora cinnamomi. Aust J Bot 43:113–134

    Google Scholar 

  • Shearer BL, Smith IW (2000) Diseases of eucalypts caused by soilborne species of Phytophthora and Pythium. In: Keane PJ, Kile GA, Podger FD, Brown NB (eds) Diseases and pathogens of eucalypts. CSIRO, Australia, pp 259–291

    Google Scholar 

  • Shurtleff MC, Averre CW III (1997) Glossary of plant-pathological terms. APS Press, St Paul

    Google Scholar 

  • Siepmann R (1984) Stammfäuleanteile in Fichtenreinbeständen und in Mischbeständen. Eur J For Pathol 14:234–240

    Google Scholar 

  • Siitonen J (2001) Forest management, coarse woody debris and saproxylic organisms: fennoscandian boreal forests as an example. Ecol Bull 49:11–41

    Google Scholar 

  • Simard SW (1998) Intensive management of young mixed forests: effects on forest health. In: Slurrock R (ed) 45th Western International Forest Disease Work Conference. Canadian Forest Service, University of Northern British Columbia, pp 48–54

    Google Scholar 

  • Simard SW, Hannam KD (2000) Effects of thinning overstory paper birch on survival and growth of interior spruce in British Columbia: implications for reforestation policy and biodiversity. For Ecol Manage 129:237–251

    Article  Google Scholar 

  • Singh JS (2002) The biodiversity crisis: a multifaceted review. Curr Sci 82:638–647

    Google Scholar 

  • Smith DM (2000) American chestnut: ill-fated monarch of the eastern hardwood forest. J For 98:12–15

    Google Scholar 

  • Spies TA, Turner MG (1999) Dynamic forest mosaics. In: Hunter ML Jr (ed) Maintaining biodiversity in forest ecosystems. Cambridge Univ Press, Cambridge, pp 95–160

    Google Scholar 

  • Stanosz GR, Patton RF (1987a) Armillaria root rot in Wisconsin aspen sucker stands. Can J For Res 17:995–1000

    Google Scholar 

  • Stanosz GR, Patton RF (1987b) Armillaria root rot in aspen stands after repeated short rotations. Can J For Res 17:1001–1005

    Google Scholar 

  • Stephenson SL (1986) Changes in a former chestnut-dominated forest after a half century of succession. Am Midl Nat 116:173–179

    Google Scholar 

  • Stiell WM, Berry AB (1986) Productivity of short-rotation aspen stands. For Chron 62:10–15

    Google Scholar 

  • Strong DR Jr, Levin DA (1975) Species richness of the parasitic fungi of British trees. Proc Natl Acad Sci USA 72:2116–2119

    PubMed  CAS  Google Scholar 

  • Tainter FH, Baker FA (1996) Principles of forest pathology. Wiley, New York

    Google Scholar 

  • Thrall PH, Burdon JJ (2002) Evolution of gene-for-gene systems in metapopulations: the effect of spatial scale of host and pathogen dispersal. Plant Pathol 51:169–184

    Article  ISI  Google Scholar 

  • Tokeshi M (1999) Species coexistence. Ecological and evolutionary perspectives. Blackwell, Oxford

    Google Scholar 

  • Tomita M, Hirabuki Y, Seiwa K (2002) Post-dispersal changes in the spatial distribution of Fagus crenata seeds. Ecology 83:1560–1565

    Article  ISI  Google Scholar 

  • Turner IM (2001) The ecology of trees in the tropical rain forest. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Twery MJ, Gottschalk KW (1996) Forest health: another fuzzy concept. J For 94(8):20

    Google Scholar 

  • Van der Kamp BJ (1991) Pathogens as agents of diversity in forested landscapes. For Chron 67:353–354

    Google Scholar 

  • Van der Maarel E (1993) Some remarks on disturbance and its relations to diversity and stability. J Veg Sci 4:733–736

    Google Scholar 

  • Van der Pas JB (1981) A statistical appraisal of Armillaria root-rot in New Zealand plantations of Pinus radiata. NZ J For Sci 11:23–36

    Google Scholar 

  • Van der Putten WH (2000) Pathogen-driven forest diversity. Nature 404:232–233

    PubMed  Google Scholar 

  • Van der Putten WH (2001) Interactions of plants, soil pathogens and their antagonists in natural ecosystems. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant pathogen associations. CABI, New York, pp 285–305

    Google Scholar 

  • Walchhütter T, Weste G, Guest D (2000) Regeneration after dieback due to Phytophthora cinnamomi — are suppressive soils involved? In: Hansen E, Sutton W (eds) Phytophthora diseases of forest trees. IUFRO Working Party. Oregon State University, Corvallis, pp 40–43

    Google Scholar 

  • Wargo PM, Harrington TC (1991) Host stress and susceptibility. In: Shaw CG III, Kile GA (eds) Armillaria root disease. Agriculture handbook no 691. USDA, Washington,DC, pp 88–101

    Google Scholar 

  • Webb CO, Peart DR (1999) Seedling density dependence promotes coexistence of Bornean rain forest trees. Ecology 80:2006–2017

    ISI  Google Scholar 

  • Weste G, Brown K, Kennedy J, Walshe T (2002) Phytophthora cinnamomi infestation — a 24 year study of vegetation change in forests and woodlands of the Grampians,Western Victoria. Aust J Bot 50:247–274

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. J Biogeogr 28:453–470

    Google Scholar 

  • Wiens JA (2000) Ecological heterogeneity: an ontogeny of concepts and approaches. In: Hutchings MJ, John EA, Stewart AJA (eds) The ecological consequences of environmental heterogeneity. Blackwell, Oxford, pp 9–31

    Google Scholar 

  • Wills C, Condit R, Foster RB, Hubbell SP (1997) Strong density-and diversity-related effects help to maintain tree species diversity in a neotropical forest. Proc Natl Acad Sci USA 94:1252–1257

    Article  PubMed  CAS  Google Scholar 

  • Wilson BA, Aberton J, Cahill DM (2000) Relationships between site factors and distribution of Phytophthora cinnamomi in the Eastern Otway Ranges, Victoria. Aust J Bot 48:247–260

    Article  Google Scholar 

  • Wingfield MJ, Slippers B, Roux J, Wingfield BD (2001) Worldwide movement of exotic forest fungi, especially in the tropics and the Southern Hemisphere. Bioscience 51:134–140

    ISI  Google Scholar 

  • Witzell J, Karlman M (2000) Importance of site type and tree species on disease incidence of Gremmeniella abietina in areas with a harsh climate in North Sweden. Scand J For Res 15:202–209

    Google Scholar 

  • Wohlgemuth T, Bürgi M, Scheidegger C, Schütz M (2002) Dominance reduction of species through disturbance — a proposed management principle for central European forests. For Ecol Manage 166:1–15

    Article  Google Scholar 

  • Wolfe MS (2000) Crop strength through diversity. Nature 406:681–682

    PubMed  CAS  ISI  Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    ISI  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:57–64

    Article  Google Scholar 

  • Zeglen S (2002) Whitebark pine and white pine blister rust in British Columbia, Canada. Can J For Res 32:1265–1274

    Article  Google Scholar 

  • Zentmyer GA (1980) Phytophthora cinnamomi and the diseases it causes. St Paul, APS

    Google Scholar 

  • Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan JX, Yang S, Hu L, Leungk H, Mewk TW, Tengk PS, Wang Z, Mundtk CC (2000) Genetic diversity and disease control in rice. Nature 406:718–722

    Article  PubMed  CAS  ISI  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pautasso, M., Holdenrieder, O., Stenlid, J. (2005). Susceptibility to Fungal Pathogens of Forests Differing in Tree Diversity. In: Scherer-Lorenzen, M., Körner, C., Schulze, ED. (eds) Forest Diversity and Function. Ecological Studies, vol 176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26599-6_13

Download citation

Publish with us

Policies and ethics