Skip to main content

Differential Balances in Turbomachinery

  • Chapter
  • 1744 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References, Chapter 3

  1. Frziger, H.J., Peric,: Computational Methods for Fluid Dynamics, 3rd Edition, Springer-Verlag, Berlin heidelberg New York.

    Google Scholar 

  2. Vavra, M.H., 1960, Aerothermodynamics and Flow in Turbomachines, John Wiley &Sons, New York

    Google Scholar 

  3. Emmons, H. W., 1951, “The Laminar-Turbulent Transition in Boundary Layer-Part I,” J. Aero. Sci., Vol. 18, pp. 490–498.

    MathSciNet  MATH  Google Scholar 

  4. Dhawan, S., and Narasimha, R., 1958, “Some Properties of Boundary Layer Flow During The Transition From Laminar to Turbulent Motion,” Journal of Fluid Mechanics, Vol. 3, pp. 418–436.

    MATH  Google Scholar 

  5. Abu-Ghannam, B. J., and Shaw, R., 1980, “Natural Transition of Boundary Layers-The Effects of Turbulence, Pressure Gradient and Flow History,” J. Mech. Eng. Sci., Vol. 22, pp. 213–228.

    Google Scholar 

  6. Gostelow, J. P., and Blunden, A. R., 1989, “Investigations of Boundary Layer Transition in an Adverse Pressure Gradient,” ASME Journal of Turbomachinery, Vol. 111, pp. 366–375.

    Google Scholar 

  7. Dullenkopf, K., Mayle, R. E., 1994, ASME Paper No.94-GT-174.

    Google Scholar 

  8. Pache, W., 1976, “Zur Frage der Entwicklung von Strömungsgrenzschichten bei instationärer Zuströmung in Turbomachinen,” Dissertation D-17, Technische Hochschule Darmstadt Germany.

    Google Scholar 

  9. Eifler, J., 1975, “Zur Frage der freien turbulenten Strömungen, insbesondere hinter ruhenden und bewegten Zylindern,” Dissertation D-17, Technische Hochschule Darmstadt, Germany.

    Google Scholar 

  10. Herbst, R., 1980, “Entwicklung von Strömung-grenzsschichten bei instationärer Zuströmung in Turbomaschinen,” Dissertation D-17, Technische Hochschule Darmstadt, Germany.

    Google Scholar 

  11. Orth, U., 1992, “Unsteady Boundary-Layer Transition in Flow Periodically Disturbed by Wakes,” ASME Paper No.92-GT-283.

    Google Scholar 

  12. Pfeil, H., and Herbst, R., 1979, “Transition Procedure of Instationary Boundary Layers,” ASME Paper No.79-GT-128.

    Google Scholar 

  13. Pfeil, H., Herbst, R., and Schröder, T., 1983, “Investigation of the Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes,” ASME Journal of Engineering for Power, Vol. 105, pp. 130–137.

    Google Scholar 

  14. Mayle, R. E., 1991, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” Journal of Turbomachinery, Vol. 113, pp. 509–537.

    Google Scholar 

  15. Walker, G.J., 1989, “Modeling of Transitional Flow in Laminar Separation Bubbles,” 9th Int. Symp. Air Breathing Engines, pp. 539–548.

    Google Scholar 

  16. Paxson, D.E., Mayle, R.E., 1991, “Laminar Boundary Layer Interaction With an Unsteady Passing Wake,” Journal of Turbomachinery, Vol. 113, pp. 419–427.

    Article  Google Scholar 

  17. Schobeiri, M. T., and Radke, R., 1993, “Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along The Concave Surface of A Curved Plate,” ASME Paper No. 94-GT-327.

    Google Scholar 

  18. Schobeiri, M. T., Read, K., and Lewalle, J., 1995, “Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition: Experimental Investigation and Wavelet Analysis,” ASME Paper No. 95-GT-437.

    Google Scholar 

  19. Chakka, P., Schobeiri, M.T., 1999, “Modeling of Unsteady Boundary Layer Transition on a Curved Plate under Periodic Unsteady Flow Condition: Aerodynamic and Heat Transfer Investigations,” ASME Transactions, Journal of Turbo machinery, January 1999, Vol. 121, pp. 88–97.

    Google Scholar 

  20. Wright, L., Schobeiri, M. T., 1999, “The Effect of Periodic Unsteady Flow on Boundary Layer and Heat Transfer on a Curved Surface,”ASME Transactions, Journal of Heat Transfer, November 1998, Vol. 120, pp. 22–33.

    Google Scholar 

  21. Schubauer, G. B., and Klebanof, P.S., “Contributions on the Mechanics of Boundary Layer Transition, NACA TN 3489 (1955) and NACA Rep.1289 (1956).

    Google Scholar 

  22. Schlichting, H., 1979, “Boundary Layer Theory, McGraw-Hill Company, Seventh Edition.

    Google Scholar 

  23. White, F. M. 1974, “Viscose Fluid Flow,” McGraw-Hill, New York.

    Google Scholar 

  24. Kovasznay, L.S.G., Kibens, V. and Blackwelder, R.F., 1970, J. Fluid Mech., Vol. 41, pp. 283.

    Google Scholar 

  25. Hedley, B. T., and Keffer F. J., 1974, “Turbulent/Non-Turbulent Decisions in an Intermittent Flow,” Journal of Fluid Mechanics, Vol. 64, pp. 625–644.

    Google Scholar 

  26. Chakka, P., Schobeiri, M.T., 1999, “Modeling of Unsteady Boundary Layer Transition on a Curved Plate under Periodic Unsteady Flow Condition: Aerodynamic and Heat Transfer Investigations,” ASME Transactions, Journal of Turbomachinery, January 1999, Vol. 121, pp. 88–97.

    Google Scholar 

  27. Spurk, J. H., 1997, “Fluid Mechanics,” Springer, ISBN 3-540-61651-9 Springer-Verlag Berlin Heidelberg New York.

    MATH  Google Scholar 

  28. Schobeiri, M. T., Pappu, K., Wright, L., 1995, “Experimental Sturdy of the Unsteady Boundary Layer Behavior on a Turbine Cascade,” ASME 95-GT-435, presented at the International Gas Turbine and Aero-Engine Congress and Exposition, Houston, Texas, June 5-8, 1995.

    Google Scholar 

  29. Schobeiri, M. T., Chakka, P., 1998, “Unsteady Wake Effects on Boundary Layer Transition and Heat Transfer Characteristics of a Turbine Blade,” ASME Paper No.98-GT-291, presented at the ASME, IGTI, International Gas Turbine Congress, in Stockholm.

    Google Scholar 

  30. Schobeiri, M.T., Jose, J., and Pappu, K., 1996, “Development of Two Dimensional Wakes within Curved Channel: Theoretical Framework and Experimental Investigations,” ASME Journal of Turbomachinery, Vol. 118, pp. 506–518.

    Article  Google Scholar 

  31. Schobeiri, M. T., Chakka, P., “Prediction of turbine blade heat transfer and aerodynamics using unsteady boundary layer transition model,” International Journal of Heat and Mass Transfer, 45 (2002) pp. 815–829.

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Differential Balances in Turbomachinery. In: Turbomachinery Flow Physics and Dynamic Performance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26591-0_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-26591-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22368-9

  • Online ISBN: 978-3-540-26591-7

Publish with us

Policies and ethics