Skip to main content

Prävention und Therapie mit Immunglobulinen — Gesichertes undweniger Gesichertes

  • Chapter
Sepsis und MODS

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 4.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alejandria MM, Lansang MA, Dans KF et al. (2002) Intravenous immunoglobulin for treating sepsis and septic shock (Systematic Review CD 001090). In: The Cochrane Library 2. Oxford, Update Software. Siehe auch The Cochrane Library, Issue 3, 2004. Chichester, UK: John Wiley & Sons, Ltd.

    Google Scholar 

  • Andersson J, Fehniger T, Björk L, Andersson U (1996) Intravenous immune globulin has effects on superantigen-induced cytokine synthesis. Infusionsther Transfusionsmed 23(Suppl 4): 7–14

    Google Scholar 

  • Andersson JP, Andersson UG (1990) Human intravenous immunoglobulin modulates monokine production in vitro. Immunology 71: 372–376

    PubMed  CAS  Google Scholar 

  • Andersson UG, Björk L, Skansen-Saphir U, Andersson JP (1993) Down-regulation of cytokine production and interleukin-2 receptor expression by pooled human IgG. Immunology 79: 211–216

    PubMed  CAS  Google Scholar 

  • Behre G, Ostermann H, Schedel I et al. (1995) Endotoxin concentrations and therapy with polyclonal IgM-enriched immunoglobulins in neutropenic cancer patients with sepsis syndrome: Pilot study and interim analysis of a randomized trial. Antiinfect Drug Chemother 13:129–134

    CAS  Google Scholar 

  • Behre G, Schedel I, Nentwig B et al. (1992) Endotoxin concentration in neutropenic patients with suspected gram-negative sepsis: Correlation with clinical outcome and determination of anti-endotoxin core antibodies during therapy with polyclonal immunoglobulin M-enriched immunoglobulins. Antimicrob Agents Chemother 36: 2139–2146

    PubMed  CAS  Google Scholar 

  • Bialek R, Bartmann P (1998) Is there an effect of immunoglobulins and G-CSF on neutrophil phagocytic activity in preterm infants? Infection 26: 375/29–378/32

    Google Scholar 

  • Bianchine PJ (2000) Use of immune globulin intravenous (human) to prevent infection in the multiple trauma patient. Crit Care Med 28: 254–255

    PubMed  CAS  Google Scholar 

  • Bozkurt B, Villaneuva FS, Holubkov R et al. (1999) Intravenous immune globulin in the therapy of peripartum cardiomyopathy. J Am Coll Cardiol 34: 177–180

    Article  PubMed  CAS  Google Scholar 

  • Brandtzaeg P, Hogasen K, Kierulf P, Mollnes TE (1996) The excessive complement activation in fulminant meningococcal septicemia is predominantly caused by alternative pathway activation. J Infect Dis 173: 647–655

    PubMed  CAS  Google Scholar 

  • Brown RF, Jackson GDF, Martin T, Westbrook RF (1997) Bacterial lipopolysaccharides induce peripheral nerve disturbances in rats that mimic human immune-mediated polyneuropathies. Labor Animal Sci 47: 354–361

    CAS  Google Scholar 

  • Cafiero F, Gipponi M, Bonalumi U, Piccardo A, Sguotti C, Corbetta G (1992) Prophylaxis of infection with intravenous immunoglobulins plus antibiotic for patients at risk for sepsis undergoing surgery for colorectal cancer: Results of a randomized, multicenter clinical trial. Surgery 112: 24–31

    PubMed  CAS  Google Scholar 

  • Cannon JG, St. Pierre BA (1998) Cytokines in exertion-induced skeletal muscle injury. Mol Cell Biochem 179: 159–167

    Article  PubMed  CAS  Google Scholar 

  • Carlet J (2001) Immunological therapy in sepsis: currently available. In: International Sepsis Forum. Practical recommdendations for the management of patients with severe sepsis and septic shock. Intensive Care Med 27/14 (Suppl. S 93–S 103)

    Google Scholar 

  • Cawley MJ, Briggs M, Haith LR et al. (1999) Intravenous immunoglobulin as adjunctive treatment for streptococcal toxic shock syndrome associated with necrotizing fasciitis: case report and review. Pharmacotherapy 19: 1094–1098

    PubMed  CAS  Google Scholar 

  • CDC MMWR Morbidity and Mortality Weekly Report (2001) Exposure to patients with meningococcal disease on aircraft — United States, 1999–2001. MMWR 50: 485–489; in: JAMA 286: 160–161

    Google Scholar 

  • Childs C, Edwards JV, Dawson M et al. (1999) Toxic shock syndrome toxin-1 (TSST-1) antibody levels in burned children. Burns 25: 473–476

    Article  PubMed  CAS  Google Scholar 

  • Christensen RD, Brown MS, Hall DC, Lassiter HA, Hill HR (1991) Effect on neutrophil kinetics and serum opsonic capacity of intravenous administration of immune globulin to neonates with clinical signs of early-onset sepsis. J Pediatr 118: 606–614

    PubMed  CAS  Google Scholar 

  • Collins MS, Hector RF, Roby RE et al. (1987) Prophylaxis of gramnegative and gram-positive infections in rodents with three intravenous immunoglobulins and therapy of experimental polymicrobial burn wound sepsis with Pseudomonas immunoglobulin and ciprofloxacin. Infection 15: 60–68

    PubMed  CAS  Google Scholar 

  • Collins MS, Mehton NS, Edwards AA, Ladehoff DK (1989) Der Therapieeffekt von Immunglobulin bei der experimentellen bakteriellen Pneumonie durch Pseudomonas aeruginosa korreliert mit der In-vitro-Opsonin-Aktivität und der In-vivo-Neutralisation von Exotoxin A. Intensivmedizin 26[Suppl 1]: 97–101

    Google Scholar 

  • Cukrowska B, Lodinova-Zadnikova R, Sokol D, Tlaskalová-Hogenová H (1999) In vitro immunoglobulin response of fetal B-cells is influenced by perinatal infections and antibiotic treatment: a study in preterm infants. Eur J Pediatr 158: 463–468

    Article  PubMed  CAS  Google Scholar 

  • Dalhoff A (1984) Synergy between acylureidopenicillins and immunoglobulin G in experimental animals. Am J Med 76: 91–100

    Article  PubMed  CAS  Google Scholar 

  • Dalhoff A (1985) In vitro and in vivo effect of immunoglobulin G on the integrity of bacterial membranes. Infection 13(Suppl 2): S 185–S 191

    CAS  Google Scholar 

  • Darenberg J, Ihendyane N, Sjölin J et al., and the StreptIg Study Group (2003) Intravenous immunoglobulin G therapy in streptococcal toxic shock syndrome. A European randomized, double-blind, placebo-controlled trial. Clin Infect Dis 37: 333–340

    Article  PubMed  CAS  Google Scholar 

  • Darville T, Tabor D, Simpson K, Jacobs RF (1994) Intravenous immunglobulin modulates human mononuclear phagocyte tumor necrosis factor-α production in vitro. Pediatr Res 35: 397–403

    PubMed  CAS  Google Scholar 

  • De Simone C, Delogu G, Corbetta G (1988) Intravenous immunglobulins in association with antibiotics: a therapeutic trial in septic intensive care unit patients. Crit Care Med 16: 23–26

    PubMed  Google Scholar 

  • Dickgießer N, Düzgün F (1988) IgM-Antikörper gegen das Toxic-shock-Syndrom Toxin-1 in Humanseren und Human-Immunglobulinen. Klin Wochenschr 66: 7–11

    PubMed  Google Scholar 

  • Dickgießer N, Kustermann B (1986) IgG Antikörper gegen das Toxic-shock-Syndrom Toxin 1 (TSST-1) in Human-Immunglobulinen. Klin Wochenschr 64: 633–635

    PubMed  Google Scholar 

  • Dominioni L, Dionigi R, Zanello M, Chiaranda M, Dionigi R, Acquarolo A, Ballabio A, Sguotti C (1991) Effects of highdose IgG on survival of surgical patients with sepsis scores of 20 or greater. Arch Surg 126: 236–240

    PubMed  CAS  Google Scholar 

  • Dominioni L, Bianchi V, Imperatori A, Minoia G, Dionigi R (1996) High-dose intravenous IgG for treaments of severe surgical infections. Dig. Surg. 13: 430–434

    Article  Google Scholar 

  • Douzinas EE, Pitaridis MT, Louris G et al. (2000) Prevention of infection in multiple trauma patients by high dose intravenous immunglobulins. Crit Care Med 28: 8–15

    PubMed  CAS  Google Scholar 

  • Duswald KH, Müller K, Seifert J, Ring J (1980) Wirksamkeit von i.v. Gammaglobulin gegen bakterielle Infektionen chirurgischer Patienten — Ergebnisse einer kontrollierten, randomisierten klinischen Studie. Münch Med Wochenschr 122: 832–836

    CAS  Google Scholar 

  • Eijkhout HW, van der Meer JWM, Kallenberg CGM et al., for the Inter-University Working Party for the Study of Immune Deficiencies (2001) The effect of two different dosages of intravenous immunoglobulin on the incidence of recurrent infections in patients with primary hypogammaglobulinemia — a randomized, double-blind, multicenter crossover trial. Ann Intern Med 35: 165–174

    Google Scholar 

  • Fischer MB, Prodeus AP, Nicholson-Weller A et al. (1997) Increased susceptibiliy to endotoxin shock in complement C3-and C4-deficient mice is corrected by C1 inhibitor replacement. J Immunol 159: 976–982

    PubMed  CAS  Google Scholar 

  • Fishman DN, Smilovitch M (1997) Intravenous immunoglobulin, blood viscosity and myocardial infarction. Can J Cardiol 13: 775–777

    Google Scholar 

  • Flessner MF, Lofthouse J, Zakaria EI R (1997) In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am J Physiol 273:H2783–H2793

    PubMed  CAS  Google Scholar 

  • Flieger RR, Winkler M, Werdan K (2003) 24-jährige Patientin mit Verdacht auf Meningokokkensepsis. Intensiv-News 7: 17–19

    Google Scholar 

  • Fluckiger U, Jones KF, Fischetti VA (1998) Immunoglobulins to group A streptococcal surface molecules decrease adherence to and invasion of human pharyngeal cells. Infection Immunity 66: 974–979

    PubMed  CAS  Google Scholar 

  • Gamper G, Oschatz E, Herkner H et al. (2001) Sepsis-associated purpura fulminans in adults. Wien Klin Wochenschr 113: 107–112

    PubMed  CAS  Google Scholar 

  • Garbett ND, Munro CS, Cole PJ (1989) Opsonic activity of a new intravenous immunoglobulin preparation: Pentaglobin compared with Sandoglobin. Clin Exp Immunol 76: 8–12

    PubMed  CAS  Google Scholar 

  • Gellerich FN, Hertel K, Trumbeckaite S et al. (1998) Respirometric and enzymatic characterization of mitochondrial function in permeabilized muscle fibers of patients with critical illness polyneuropathy and myopathy. Eur Cytokine Network 9: 706–711 (Abstracts)

    Google Scholar 

  • Glinz W, Grob PJ, Nydegger UE, Ricklin T, Stamm P, Stoffel D, Lasance A (1985) Polyvalent immunoglobulins for prophylaxis of bacterial Infections in Patients following multiple trauma — a randomized, placebo-controlled study. Intensive Care Med 11:288–294

    Article  PubMed  CAS  Google Scholar 

  • Gute DC, Ishida T, Yarimizu K, Korthuis RJ (1998) Inflammatory responses to ischemia and reperfusion in skeletal muscle. Mol Cell Biochem 179: 169–187

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez G, Hurtado FJ, Fernandez E (1995) Inhibitory effect of Escherichia coli endotoxin on skeletal muscle contractility. Crit Care Med 23: 308–315

    PubMed  CAS  Google Scholar 

  • Hartung H-P, Gold R, Fazekas F (1998) Immun-Neuropathien: Einsatz von intravenös applizierbaren Immunglobulinen. Die gelben Hefte 38: 98–104

    Google Scholar 

  • Hector RF, Collins MS, Pennington JE (1989) Treatment of experimental Pseudomonas aeruginosa pneumonia with a human IgM monoclonal antibody. J Infect Dis 160: 483–489

    PubMed  CAS  Google Scholar 

  • Heeg K (1996) Superantigene — Bedeutung als Sepsisinduktoren. Infusionsther Transfusionsmed 23(Suppl 4):15–21

    Google Scholar 

  • Heiken H, Schmidt RE (2003) Indikationen für den Einsatz von Immunglobulinen. Ergebnisse einer Konsensuskonferenz an der Medizinischen Hochschule Hannover. Dtsch. med. Wschr. 128: 1665–1669

    PubMed  CAS  Google Scholar 

  • Hellman J, Loiselle PM, Zanzot EM et al. (2000) Release of gram-negative outer-membrane proteins into human serum and septic rat blood and their interactions with immunoglobulin in antiserum to Escherichia coli J5. J Infect Dis 181: 1034–1043

    Article  PubMed  CAS  Google Scholar 

  • Hill HR (2000) Additional confirmation of the lack of effect of intravenous immunoglobulin in the prevention of neonatal infection. J Pediatr 137: 595–597

    PubMed  CAS  Google Scholar 

  • Hill HR, Bathras JM (1986) Protective and opsonic activities of a native, pH 4.25 intravenous immunoglobulin G preparation against common bacterial pathogens. Rev. Infect. Dis 160: 483–489

    Google Scholar 

  • Hopkins PM (1996) Human recombinant TNF-α affects rat diaphragm muscle in vitro. Intensive Care Med 22: 359–362

    Article  PubMed  CAS  Google Scholar 

  • Horstkotte D, Kutkuhn B, Schultheiss HP, Strauer B (1992) Prophylaktischer Einsatz humaner Ig-GAM-Konzentrate bei Patienten mit Plasmaseparation unter Respiratortherapie: Ergebnisse einer randomisierten Studie. Intensivmedizin 29: 227–233

    Google Scholar 

  • Hund E (2003) Critical illness-Polyneuropathie und —myopathie. Intensivmed 40: 203–211

    Article  Google Scholar 

  • Hussain SNA (1998) Respiratory muscle dysfunction in sepsis. Mol Cell Biochem 179: 125–134

    Article  PubMed  CAS  Google Scholar 

  • IICSG (siehe unter »The Intravenous…)

    Google Scholar 

  • International Sepsis Forum (2001) Practical recommdendations for the management of patients with severe sepsis and septic shock. Intensive Care Med 27/14 (Suppl S1–S 134)

    Google Scholar 

  • Ito Y, Lukita-Atmadja W, Machen NW, Baker GL, McCuskey RS (2000) High doses of intravenous immunoglobulin G enhance Kupffer cell phagocytic function during the late phase of sepsis and endotoxemia in rats. Shock 13: 485–491

    PubMed  CAS  Google Scholar 

  • Jenson HB, Pollock BH (1998) The role of intravenous immunoglobulin for the prevention and treatment of neonatal sepsis. Semin Perinatol 22: 50–63

    PubMed  CAS  Google Scholar 

  • Jesdinsky HJ, Tempel G, Castrup HJ, Seifert J (1987) Cooperative group of additional immunglobulin therapy in severe bacterial infections: results of a multicenter randomized controlled trial in cases of diffuse fibrinopurulent peritonitis. Klin Wochenschr 65:1132–1138

    Article  PubMed  CAS  Google Scholar 

  • Just H-M, Metzger M, Vogel W, Pelka RB (1986) Einfluss einer adjuvanten Immunglobulintherapie auf Infektionen bei Patienten einer operativen Intensiv-Therapie-Station — Ergebnisse einer randomisierten kontrollierten Studie. Klin Wochenschr 64: 245–256

    Article  PubMed  CAS  Google Scholar 

  • Kaul R, McGeer A, Norrby-Teglund A et al., and the Canadian Streptococcal Study Group (1999) Intravenus immunoglobulin therapy for streptococcal toxic shock syndrome — a comparative observational study. Clin Infect Dis 28: 800–807

    PubMed  CAS  Google Scholar 

  • Kazatchkine MD, Kaveri SV (2001) Immunomdulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med 345: 747–755

    Article  PubMed  CAS  Google Scholar 

  • Kekow J, Reinholf D, Pap T, Ansorge S (1998) Intravenous immunoglobulins and transforming growth factor. Lancet 351: 184–185

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto C, Takamatsu N, Kawamata H et al. (2000) Immunoglobulin treatment ameliorates murine myocarditis associated with reduction of neurohumoral activity and improvement of extracellular matrix change. J Am Coll Cardiol 36: 1979–1984

    Article  PubMed  CAS  Google Scholar 

  • Koch T, Heller S, Weber K, Heller A, Urbaschek R (1997) Effekte von humanem i.v.-Immunglobulin auf die Bakterien-Clearance und Granulozytenfunktion bei Endotoxinämie. Anästhesiol Intensivmed Notfallmed Schmerzther 32: 420–425

    PubMed  CAS  Google Scholar 

  • Krause KM, Moody MR, Andrade FH et al. (1998) Peritonitis causes diaphragm weakness in rats. Am J Respir Crit Care Med 157: 1277–1282

    PubMed  CAS  Google Scholar 

  • Kress HG, Scheidewig C, Schmitt H, Silber RE (1999) Reduced incidence of postoperative infections following intravenous application of an IgA-and IgM-enriched immunoglobulin preparation in anergic patients undergoing cardiac surgery. Crit Care Med 27: 1281–1287, 1387–1388

    PubMed  CAS  Google Scholar 

  • Kuhn C, Müller-Werdan U, Schmitt DV et al. (2000) Improved outcome of APACHE II score-defined escalating systemic inflammatory response syndrome in patients post cardiac surgery in 1996 compared to 1988-1990: the ESSICSstudy pilot project. Eur J Cardio-Thoracic Surg 17: 30–37

    Article  CAS  Google Scholar 

  • Lee ML, Gale RP, Yap PL (1997) Use of intravenous immunoglobulin to prevent or treat inflections in persons with immune deficiency. Ann Rev Med 48: 93–102

    PubMed  CAS  Google Scholar 

  • Lehmkuhl P, Pichlmayr I (1991) Sepsis-Therapie mit 5-S-Immunglobulinen. In: Deutsch E, Gadner H. Graninger W et al. (Hrsg) Intensivmedizinisches Seminar, Bd 3: Infektionen auf Intensivstationen. Springer, Berlin Heidelberg New York Tokyo, S 127–137

    Google Scholar 

  • Leitjen FSS, Harinck-de Weerd KE, Poortvliet DC], de Weerd Al W (1995) The Role of Polyneuropathy in Motor Convalescence After Prolonged Mechanical Ventilation. JAMA 274: 1221–1225

    Google Scholar 

  • Lissner R, Struff WG, Autenrieth IB et al. (1999) Efficacy and potential clinical application of Pentaglobin, an IgM-enriched immunoglobulin concentrate suitable for intravenous infusion. Eur J Surg 163(Suppl 584): 17–25

    Google Scholar 

  • Lorenz W, Neugebauer E, Pilz G, Werdan K, Lorenz M (1994) Methodology of clinical trials in sepsis — Introduction. Theoret Surg 9: 10–11 (Weitere Beiträge: S 12–67)

    Google Scholar 

  • Madl C, Koppensteiner R, Wendelin B et al. (1993) Effect of Immunoglobin Administration on Blood Rheology in Patients with Septic Shock. Circ Shock 40: 264–267

    PubMed  CAS  Google Scholar 

  • Maes M, Hendriks D, Van Gastel A, Demedts P et al. (1997) Effects of psychological stress on serum immunoglobulin, complement and acute phase protein concentrations in normal volunteers. Psychoneuroendocrinology 22: 397–409

    PubMed  CAS  Google Scholar 

  • Mao P, Enrichens F, Olivero G, Festa T, Benedetto G, Sciascia C, Vigetti E, Mauri A, Olivero S (1989) Early administration of intravenous immunoglobulins in the prevention of surgical and post-traumatic sepsis: a double blind randomized clinical trial. Surg Res Comm 5: 93–98

    Google Scholar 

  • Maródi L, Kalmár A, Szabó I (1989) Opsonic activity in serum from septic infants treated with intravenous immunoglobulin. Arch Dis Child 64: 530–534

    PubMed  Google Scholar 

  • Martin S (2001) A predicitve test for the efficacy of intravenous immunoglobulin in the inhibition of alloantibodies. Transplantation 71: 1366–1367

    PubMed  CAS  Google Scholar 

  • McNamara DM, Holubkov R, Starling RC et al., for the Intervention in Myocarditis and Acute Cardiomyopathy (IMAC) Investigators (2001) Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyoapthy. Circulation 103: 2254–2263

    PubMed  CAS  Google Scholar 

  • Menezes MCS, Benard G, Sato MN, Hong MA, Duarte AJS (1997) In vitro inhibitory activity of tumor necrosis factor alpha and interleukin-2 of human immunoglobulin preparations. Int Arch Allergy Immunol 114: 323–328

    Article  PubMed  CAS  Google Scholar 

  • Mohan H, Paes ML, Haynes S (1999) Use of intravenous immunoglobulins as an adjunct in the conservative management of chylothorax. Paediatr Anaesth: 989–992

    Google Scholar 

  • Mohr M, Englisch L, Roth A, Burchardi H, Zielmann S (1997) Effects of early treatment with immunoglobulin on critical illness polyneuropathy following multiple organ failure and gram-negative sepsis. Intensive Care Med 23: 1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Mollues TE, Andreassen IH, Hogasen K, Hack CE, Harboe M (1997) Effect of whole and fractionated intravenous immunoglobulin on complement in vitro. Molecular Immunol 34: 719–729

    Google Scholar 

  • Müller U, Melnitzki SM, Reithmann C, Werdan K (1989) Herzmuskelzellkulturen der Ratte: Ein Modell zur Beurteilung kardiotoxischer Effekte von Pseudomonas-aeruginosa-Endotoxin und-Exotoxin A. Intensivmedizin 26[Suppl 1]: 26–31

    Google Scholar 

  • Müller-Werdan U, Pfeifer A, Hübner G, Seliger C, Reithmann C, Rupp H, Werdan K (1997) Partial inhibition of protein synthesis by Pseudomonas exotoxin A deranges catecholamine sensitivity of cultured rat heart myocites. J Mol Cell Cardiol 29: 799–811

    PubMed  Google Scholar 

  • Neugebauer EAM, Marggraf G, Lefering R (guest editors) (1999) Immunoglobulins in inflammation. Consensus-assisted protocol development and discussion forum of a study protocol »Adjuvant Treatment of Mediastinitis with Immunoglobulin (Pentaglobin) after Cardiac Surgery (ATMI)«. Eur J Surg 163(Suppl 584): 5–100

    Google Scholar 

  • NIH Consensus Conference (1990) Intravenous immunoglobulins: prevention and treatment of disease. JAMA 264: 3189–3193

    Google Scholar 

  • Norrby-Teglund A, Ihendyne N, Kansal R et al. (2000) Relative neutralizing activity in polyspecific IgM, IgA, and IgG preparations against group A streptococcal superantigens. Clin Infect Dis 31: 1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Nydegger UE, Sturzenegger M (1999) Adverse effects of intravenous immunogobulin therapy. Drug Safety 21: 171–185

    PubMed  CAS  Google Scholar 

  • Nys M, Damas J, Damas P et al. (1999a) Study of the protective effects of hyerimmune immunoglobulins G and M against endotoxin in mice and rats. Med Microbiol Immunol 188:55–64

    PubMed  CAS  Google Scholar 

  • Nys M, Damas J, Damas P, Laub R, Lamy M (1999b) Influence of human anti-lipopolysaccharide immunoglobulins on tissue distribution and clearance of lipopolysaccharide in rats. Med Microbiol Immunol 188: 65–71

    PubMed  CAS  Google Scholar 

  • Oesser S, Schulze C, Seifert J (1999) Protective capacity of an IgM/IgA-enriched polyclonal immunoglobulin-G preparation in endotoxemia. Res Exp Med 198: 325–339

    Article  CAS  Google Scholar 

  • Ohlsson A, Lacy JB (1999) Intravenous immunoglobulin for suspected or subsequently proven neonatal infection (Cochrane Review). In: The Cochrane database of randomised trials

    Google Scholar 

  • Pape H-C, Remmers d, Grotz M et al. (1999) Levels of antibodies to endotoxin and cytokine release in patients with severe trauma: does posttraumatic dysergy contribute to organ failure? J Trauma 46: 907–913

    PubMed  CAS  Google Scholar 

  • Pennington JE, Pier GB (1987) Pseudomonas aeruginosa immunoglobulin in experimental pneumonia. Infection 15(Suppl 2): S 47–S 49

    Google Scholar 

  • Pilz G, Appel R, Gurniak T, Bujdoso O, Werdan K (1992) APACHE II und Elebute Score-Berechnung und Sepsisbeurteilung auf der Intensivstation anhand eines BASIC Computerprogramms. Intensivmedizin 29:81–89

    Google Scholar 

  • Pilz G, Appel R, Kreuzer E, Werdan K (1997) Comparison of early IgM-enriched immunoglobulin vs polyvalent IgG administration in score-identified post-cardiac surgical patients at high risk for sepsis. Chest 111: 419–426

    PubMed  CAS  Google Scholar 

  • Pilz G, Fateh-Moghadam S, Viell B, Bujdoso O, Döring G, Marget W, Neumann R, Werdan K (1993) Supplemental immunoglobulin therapy in sepsis and septic shock-comparison of mortality under treatment with polyvalent i.v. immunoglobulin versus placebo: Protocol of a multicenter, randomized, prospective, double-blind trial. Theor Surg 8: 61–83

    Google Scholar 

  • Pilz G, Fraunberger P, Appel R, Kreuzer E, Werdan K, Walli A, Seidel A (1996) Early prediction of outcome in score-identified, postcardiac patients at high risk for sepsis, using soluble tumor necrosis factor receptor-p55 concentrations. Crit Care Med 24: 596–600

    PubMed  CAS  Google Scholar 

  • Pilz G, Kääb S, Neeser G, Class I, Schweigart U, Brähler A, Bujdoso O, Neumann R, Werdan K (1991) Supplemental immunoglobulin (ivIgG) treatment in 163 patients with sepsis and septic shock — an observational study as a prerequisite for placebo controlled clinical trials. Infection 19: 216–227

    Article  PubMed  CAS  Google Scholar 

  • Pilz G, Kreuzer E, Kääb S, Appel R, Werdan K (1994) Early sepsis treatment with immunoglobulins after cardiac surgery in score-identified high-risk patients. Chest 105:76–82

    PubMed  CAS  Google Scholar 

  • Pilz G, Werdan K (1990) Cardiovascular parameters and scoring systems in the evaluation of response to therapy in sepsis and septic shock. Infection 18: 253–262

    Article  PubMed  CAS  Google Scholar 

  • Pollack M (1983) Antibody activity against Pseudomonas aeruginosa in immune globulins prepared for intravenous use in humans. J Infect Dis 147: 1090–1098

    PubMed  CAS  Google Scholar 

  • Poutsiaka DD, Clark BD, Vannier E, Dinarello CA (1991) Production of interleukin-1 receptor antagonist and interleukin-1β by peripheral blood mononuclear cells is differentially regulated. Blood 78: 1275–1281

    PubMed  CAS  Google Scholar 

  • Reid WD (1998) Respiratory muscle injury: is it important? Mol Cell Biochem 179: 59–61

    PubMed  CAS  Google Scholar 

  • Reitan SK, Hannestad K (2001) The primary IgM antibody repertoire: a source of potent idiotype immunogens. Eur J Immunol 31: 2143–2153

    Article  PubMed  CAS  Google Scholar 

  • Rieben R, Muizert Y, Gerritsen AF, Daha MR (1999) Immunoglobulin M Enriched Human Intravenous Immunoglobulin Prevents Complement Activation In Vitro and In Vivo in a Rat Model of Acute Inflammation Blood.

    Google Scholar 

  • Rodriguez A, Palizas F, Neira J et al., for the Abdominal Sepsis Study Group. IgM-enriched intravenous immunoglobulin in patients with abdominal sepsis. In print

    Google Scholar 

  • Rosenstein NE, Perkins BA, Stephens DS, Popovic T, Hughes JM (2001) Meningococcal Disease. N Engl J Med 344: 1378–1387

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein I, Abassi Z, Coleman R, Milman F, Winaver J, Better OS (1998) Involvement of nitric oxide system in experimental muscle crush injury. J Clin Invest 101: 1325–1333

    Article  PubMed  CAS  Google Scholar 

  • Sablotzki A, Friedrich I, Holzheimer RG et al. (1999) Prophylactic use of immunoglobulins in cardiac surgery. Sepsis 3:247–253

    Article  Google Scholar 

  • Samuelsson A, Towers TL, Ravetch JV (2001) Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291: 14–16

    Article  Google Scholar 

  • Sandberg K, Fasth A, Berger A et al. (2000) Preterm infants with low immunoglobulin G levels have increased risk of neonatal sepsis but do not benefit from prophylactic immunoglobulin G. J Pediatr 137: 623–628

    PubMed  CAS  Google Scholar 

  • Schedel I, Dreikhausen U, Nentwig B, Höchenschneider M, Rauthmann D, Balikcioglu S, Coldewey R, Deicher H (1991) Treatment of Gram-negative septic shock with an immunoglobulin preparation: A prospective, randomized clinical trial. Crit Care Med 19: 1104–1113

    PubMed  CAS  Google Scholar 

  • Shenoi A, Nagesh NK, Maiya PP et al. (1999) Multicenter randomized placebo conrolled trial of therapy with intravenous immunoglobulin in decreasing mortality due to neonatal sepsis. Indian Pediatr 36: 113–118

    Google Scholar 

  • Skansen-Saphir U, Andersson J, Björk L, Andersson U (1994) Lymphokine production induced by streptococcal pyrogenic exotoxin-A is selectively down-regulated by pooled human IgG. Eur J Immunol 24: 916–922

    PubMed  CAS  Google Scholar 

  • Spannbrucker N, Münch HG, Kunze R, Vogel F (1987) Auswirkungen von Immunglobulin-Substitution bei Sepsis. Intensivmedizin 24: 314

    Google Scholar 

  • Stangel M, Hartung H-P, Marx P, Gold R (1997) Side effects of high-dose intravenous immunoglobulins. Clin Neuropharmacol 20: 385–393

    PubMed  CAS  Google Scholar 

  • Stevens DL (2003) Dilemmas in the treatment of invasive streptococcus pyogenes infections. Clin Infect Dis 37: 341–343

    Article  PubMed  Google Scholar 

  • Supinski G (1998) Free radical induced respiratory muscle dysfunction. Mol Cell Biochem 179: 99–110

    Article  PubMed  CAS  Google Scholar 

  • Supinski G, Nethery D, Stofan D, DiMarco A (1996) Comparison of the effects of endotoxin on limb, respiratory and cardiac muscles. J Appl Physiol 81: 1370–1378

    PubMed  CAS  Google Scholar 

  • Syabbalo N (1998) Assessment of respiratory muscle function and strength. Postgrad Med J 74: 208–215

    Article  PubMed  CAS  Google Scholar 

  • Teeling JL, Jansen-Hendriks T, Kuijpers TW et al. (2001) Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood 98: 1095–1099

    Article  PubMed  CAS  Google Scholar 

  • The Intravenous Immunoglobulin Collaborative Study Group (1992) Prophylactic intravenous administration of standard immune globulin as compared with core-lipopolysaccharide immune globulin in patients at high risk of postsurgical infection. N. Engl J Med 327: 234–240

    Google Scholar 

  • Thomson A, Sills J, Hart CA, Harris F (1989) Anti-endotoxin therapy for fulminant meningococcal septicaemia: pilot study. Arch Dis Child 64: 1217–1218

    Google Scholar 

  • Tobin MJ, Laghi F, Jubran A (1998) Respiratory muscle dysfunction in mechanically-ventilated patients. Mol Cell Biochem 179: 87–98

    Article  PubMed  CAS  Google Scholar 

  • Trautmann M, Held TK, Susa M et al. (1998) Bacterial lipopolysaccharide (LPS)-specific antibodies in commercial human immunoglobulin preparations: superior antibody content of an IgM-enriched product. Clin Exp Immunol 111: 81–90

    Article  PubMed  CAS  Google Scholar 

  • Tugrul S, Ozcan PE, Akinci O et al. (2002) The effects of IgMenriched immunogobulin preparations in patients with severe sepsis [ISRCTN28863830]. Critical Care: 6357–6362. Available online: http://ccforum.com/content/6/4/357

    Google Scholar 

  • Van Schaik N, Vermeulen M, Brand A (1998) Intravenous immunoglobulins and transforming growth factor β. Lancet 351: 1288

    PubMed  Google Scholar 

  • Viell B, Vestweber KH (1984) The effect of immunoglobulin and antibiotic in E. coli infection of malnourished mice. Infect Immun 12: 61–64

    CAS  Google Scholar 

  • Vogel F (1988) Bewertung der intravenösen IgM-Therapie bei schweren nosokomialen Infektionen (Ergebnis einer kontrollierten randomisierten Studie). In: Deicher H, Schoppe W (Hrsg) Klinisch angewandte Immunologie — Sepsistherapie mit IgM-angereichertem Immunglobulin. Springer, Berlin Heidelberg New York Tokyo, S 30–41

    Google Scholar 

  • Wagner E, Platt JL, Frank MM (1998) High dose intravenous immunoglobulin does not affect complement-bacteria interactions. J Immunol 160: 1036–1043

    Google Scholar 

  • Wahn V (2000) Klinischer Einsatz von intravenösen Immunglobulinen. Uni-Med, Bremen

    Google Scholar 

  • Wassmuth IA, Hauser K, Schuler H et al. (2001) Differencial inhibitory effects of intravenous immunoglobulin preparations on HLA-alloantibodies in vitro. Transplantation 71: 1436

    PubMed  CAS  Google Scholar 

  • Wenisch C, Parschalk B, Patruta S, Brustbauer R, Graninger W (1999) Effect of polyclonal immunoglobulins on neutrophil phagocytic capacity and reactive oxygen production in patients with gram-negative septicemia. Infection 27: 183/31–186/34

    Google Scholar 

  • Werdan K (2001) Intravenous immunoglobulin for prophylaxis and therapy of sepsis. Curr Opin Crit Care 7: 354–361

    PubMed  CAS  Google Scholar 

  • Werdan K, Melnitzki SM, Pilz G, Kapsner T (1989) The cultured rat heart cell: a model to study direct cardiotoxic effects of Pseudomonas endo-and exotoxin. In: Schlag G, Redl H (eds) Progress in clinical and biological research, Second Vienna Shock Forum, vol 308. Liss, New York, pp 247–251

    Google Scholar 

  • Werdan K, Pilz G (1992) Treatment of Gram-negative septic shock with an immunoglobulin (letter to the editor). Crit Care Med 20: 1364–1365

    PubMed  CAS  Google Scholar 

  • Werdan K, Pilz G, and the SBITS Study Group (1997) Polyvalent immune globulins. Shock Suppl to vol 7: Abstract 5/18

    Google Scholar 

  • Wick M, Wick M, Heberger S, Simon H, Fateh-Moghadam A (1996) Proteinanalytische Qualitätsuntersuchungen bei IgG-Präparaten. Infusionsther Transfusionsmed 23(Suppl 4): 5–59

    Google Scholar 

  • Wijdicks EFM, Fulgham JR (1994) Failure of high dose intravenous immunoglobulins to alter the clinical course of critical illness polyneuropathy (letter). Muscle Nerve 17: 1494–1495

    PubMed  CAS  Google Scholar 

  • Wortel CH, Dellinger P (1993) Treatment of Gram-negative septic shock with an immunoglobulin preparation: a prospective, randomized clinical trial (letter to the editor) Crit Care Med 21: 163–165

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Werdan, K. (2005). Prävention und Therapie mit Immunglobulinen — Gesichertes undweniger Gesichertes. In: Werdan, K., Schuster, HP., Müller-Werdan, U. (eds) Sepsis und MODS. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26587-2_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-26587-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-00004-4

  • Online ISBN: 978-3-540-26587-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics