Skip to main content

Modulators of Endocannabinoid Enzymic Hydrolysis and Membrane Transport

  • Chapter
Cannabinoids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 168))

Abstract

Tissue concentrations of the endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are regulated by both synthesis and inactivation. The purpose of this review is to compile available data regarding three inactivation processes: fatty acid amide hydrolase, monoacylglycerol lipase, and cellular membrane transport. In particular, we have focused on mechanisms by which these processes are modulated. We describe the in vitro and in vivo effects of inhibitors of these processes as well as available evidence regarding their modulation by other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arreaza G, Deutsch DG (1999) Deletion of a proline-rich region and a transmembrane domain in fatty acid amide hydrolase. FEBS Lett 454:57–60

    Article  PubMed  CAS  Google Scholar 

  • Baker RR, Chang H (2000) A metabolic path for the degradation of lysophosphatidic acid, an inhibitor of lysophosphatidylcholine lysophospholipase, in neuronal nuclei of cerebral cortex. Biochim Biophys Acta 1483:58–68

    PubMed  CAS  Google Scholar 

  • Balsinde J, Diez E, Mollinedo F (1991) Arachidonic acid release from diacylglycerol in human neutrophils. Translocation of diacylglycerol-deacylating enzyme activities from an intracellular pool to plasma membrane upon cell activation. J Biol Chem 266:15638–15643

    PubMed  CAS  Google Scholar 

  • Beltramo M, Piomelli D (2000) Carrier-mediated transport and enzymatic hydrolysis of the endogenous cannabinoid 2-arachidonylglycerol. Neuroreport 11:1231–1235

    PubMed  CAS  Google Scholar 

  • Beltramo M, di Tomaso E, Piomelli D (1997a) Inhibition of anandamide hydrolysis in rat brain tissue by (E)-6-(bromomethylene) tetrahydro-3-(1-naphthalenyl)-2H-pyran-2-one. FEBS Lett 403:263–267

    Article  PubMed  CAS  Google Scholar 

  • Beltramo M, Stella N, Calignano A, Lin SY, Makriyannis A, Piomelli D (1997b) Functional role of high-affinity anandamide transport, as revealed by selective inhibition. Science 277:1094–1097

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Maurelli S, Melck D, De Petrocellis L, Di Marzo V (1997a) Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem 272:3315–3323

    PubMed  CAS  Google Scholar 

  • Bisogno T, Sepe N, Melck D, Maurelli S, De Petrocellis L, Di Marzo V (1997b) Biosynthesis, release and degradation of the novel endogenous cannabimimetic metabolite 2-arachidonoylglycerol in mouse neuroblastoma cells. Biochem J 322:671–677

    PubMed  CAS  Google Scholar 

  • Bisogno T, Melck D, De Petrocellis L, Bobrov M, Gretskaya NM, Bezuglov VV, Sitachitta N, Gerwick WH, Di Marzo V (1998) Arachidonoylserotonin and other novel inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun 248:515–522

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Melck D, Bobrov M, Gretskaya NM, Bezuglov VV, De Petrocellis L, Di Marzo V (2000) N-acyl-dopamines: novel synthetic CB(1) cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo. Biochem J 351:817–824

    Article  PubMed  CAS  Google Scholar 

  • Bisogno T, Maccarrone M, De Petrocellis L, Jarrahian A, Finazzi-Agro A, Hillard C, Di Marzo V (2001) The uptake by cells of 2-arachidonoylglycerol, an endogenous agonist of cannabinoid receptors. Eur J Biochem 268:1982–1989

    Article  PubMed  CAS  Google Scholar 

  • Boger DL, Sato H, Lerner AE, Hedrick MP, Fecik RA, Miyauchi H, Wilkie GD, Austin BJ, Patricelli MP, Cravatt BF (2000) Exceptionally potent inhibitors of fatty acid amide hydrolase: the enzyme responsible for degradation of endogenous oleamide and anandamide. Proc Natl Acad Sci U S A 97:5044–5049

    Article  PubMed  CAS  Google Scholar 

  • Bracey MH, Hanson MA, Masuda KR, Stevens RC, Cravatt BF (2002) Structural adaptations in a membrane enzyme that terminates endocannabinoid signaling. Science 298:1793–1796

    Article  PubMed  CAS  Google Scholar 

  • Burstein SH, Huang SM, Petros TJ, Rossetti RG, Walker JM, Zurier RB (2002) Regulation of anandamide tissue levels by N-arachidonylglycine. Biochem Pharmacol 64:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Lichtman AH (2002) The enzymatic inactivation of the fatty acid amide class of signaling lipids. Chem Phys Lipids 121:135–148

    PubMed  CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  PubMed  CAS  Google Scholar 

  • Cravatt BF, Demarest K, Patricelli MP, Bracey MH, Giang DK, Martin BR, Lichtman AH (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci U S A 98:9371–9376

    Article  PubMed  CAS  Google Scholar 

  • de Lago E, Ligresti A, Ortar G, Morera E, Cabranes A, Pryce G, Bifulco M, Baker D, Fernandez-Ruiz J, Di Marzo V (2004) In vivo pharmacological actions of two novel inhibitors of anandamide cellular uptake. Eur J Pharmacol 484:249–257

    PubMed  Google Scholar 

  • De Petrocellis L, Melck D, Ueda N, Maurelli S, Kurahashi Y, Yamamoto S, Marino G, Di Marzo V (1997) Novel inhibitors of brain, neuronal, and basophilic anandamide amidohydrolase. Biochem Biophys Res Commun 231:82–88

    PubMed  Google Scholar 

  • De Petrocellis L, Bisogno T, Davis JB, Pertwee RG, Di Marzo V (2000) Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Lett 483:52–56

    PubMed  Google Scholar 

  • Desarnaud F, Cadas H, Piomelli D (1995) Anandamide amidohydrolase activity in rat brain microsomes. Identification and partial characterization. J Biol Chem 270:6030–6035

    PubMed  CAS  Google Scholar 

  • Deutsch DG, Chin SA (1993) Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol 46:791–796

    Article  PubMed  CAS  Google Scholar 

  • Deutsch DG, Omeir R, Arreaza G, Salehani D, Prestwich GD, Huang Z, Howlett A (1997a) Methyl arachidonyl fluorophosphonate: a potent irreversible inhibitor of anandamide amidase. Biochem Pharmacol 53:255–260

    Article  PubMed  CAS  Google Scholar 

  • Deutsch DG, Lin S, Hill WA, Morse KL, Salehani D, Arreaza G, Omeir RL, Makriyannis A (1997b) Fatty acid sulfonyl fluorides inhibit anandamide metabolism and bind to the cannabinoid receptor. Biochem Biophys Res Commun 231:217–221

    Article  PubMed  CAS  Google Scholar 

  • Deutsch DG, Glaser ST, Howell JM, Kunz JS, Puffenbarger RA, Hillard CJ, Abumrad N (2001) The cellular uptake of anandamide is coupled to its breakdown by fatty-acid amide hydrolase. J Biol Chem 276:6967–6973

    Article  PubMed  CAS  Google Scholar 

  • Di Marzo V, Bisogno T, De Petrocellis L, Melck D, Orlando P, Wagner JA, Kunos G (1999) Biosynthesis and inactivation of the endocannabinoid 2-arachidonoylglycerol in circulating and tumoral macrophages. Eur J Biochem 264:258–267

    PubMed  Google Scholar 

  • Di Marzo V, Griffin G, De Petrocellis L, Brandi I, Bisogno T, Williams W, Grier MC, Kulasegram S, Mahadevan A, Razdan RK, Martin BR (2002) A structure/activity relationship study on arvanil, an endocannabinoid and vanilloid hybrid. J Pharmacol Exp Ther 300:984–991

    PubMed  Google Scholar 

  • Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL, Kathuria S, Piomelli D (2002) Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci U S A 99:10819–10824

    Article  PubMed  CAS  Google Scholar 

  • Edgemond WS, Greenberg MJ, McGinley PJ, Muthian S, Campbell WB, Hillard CJ (1998) Synthesis and characterization of diazomethylarachidonyl ketone: an irreversible inhibitor of N-arachidonylethanolamine amidohydrolase. J Pharmacol Exp Ther 286:184–190

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA (1997) Nitric oxide synthase inhibitors do not attenuate diacylglycerol or monoacylglycerol lipase activities in synaptoneurosomes. Neurochem Res 22:1265–1269

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Anderson DK, Horrocks LA (1993) Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures.Brain Res 604:180–184

    Article  PubMed  CAS  Google Scholar 

  • Fedorova I, Hashimoto A, Fecik RA, Hedrick MP, Hanus LO, Boger DL, Rice KC, Basile AS (2001) Behavioral evidence for the interaction of oleamide with multiple neurotransmitter systems. J Pharmacol Exp Ther 299:332–342

    PubMed  CAS  Google Scholar 

  • Fegley D, Kathuria S, Mercier R, Li C, Goutopoulos A, Makriyannis A, Piomelli D (2004) Anandamide transport is independent of fatty-acid amide hydrolase activity and is blocked by thehydrolysis-resistant inhibitor AM1172. Proc Natl Acad Sci U S A 101:8756–8761

    Article  PubMed  CAS  Google Scholar 

  • Fernando SR, Pertwee RG (1997) Evidence that methyl arachidonyl fluorophosphonate is an irreversible cannabinoid receptor antagonist. Br J Pharmacol 121:1716–1720

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Tiger G, Stenstrom A (1997a) Ibuprofen inhibits rat brain deamidation of anandamide at pharmacologically relevant concentrations. Mode of inhibition and structure-activity relationship. J Pharmacol Exp Ther 283:729–734

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Stenstrom A, Tiger G (1997b) Ibuprofen inhibits the metabolism of the endogenous cannabimimetic agent anandamide. Pharmacol Toxicol 80:103–107

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Holt S, Tiger G (2003) Acidic nonsteroidal anti-inflammatory drugs inhibit rat brain fatty acid amide hydrolase in a pH-dependent manner. J Enzyme Inhib Med Chem 18:55–58

    PubMed  CAS  Google Scholar 

  • Fowler CJ, Tiger G, Ligresti A, Lopez-Rodriguez ML, Di Marzo V (2004) Selective inhibition of anandamide cellular uptake versus enzymatic hydrolysis-a difficult issue to handle. Eur J Pharmacol 492:1–11

    Article  PubMed  CAS  Google Scholar 

  • Gaetani S, Cuomo V, Piomelli D (2003) Anandamide hydrolysis: a new target for anti-anxiety drugs? Trends Mol Med 9:474–478

    Article  PubMed  CAS  Google Scholar 

  • Giang DK, Cravatt BF (1997) Molecular characterization of human and mouse fatty acid amide hydrolases. Proc Natl Acad Sci U S A 94:2238–2242

    Article  PubMed  CAS  Google Scholar 

  • Glaser ST, Abumrad NA, Fatade F, Kaczocha M, Studholme KM, Deutsch DG (2003) Evidence against the presence of an anandamide transporter. Proc Natl Acad Sci U S A 100:4269–4274

    Article  PubMed  CAS  Google Scholar 

  • Goparaju SK, Ueda N, Yamaguchi H, Yamamoto S (1998) Anandamide amidohydrolase reacting with 2-arachidonoylglycerol, another cannabinoid receptor ligand. FEBS Lett 422:69–73

    Article  PubMed  CAS  Google Scholar 

  • Goparaju SK, Ueda N, Taniguchi K, Yamamoto S (1999) Enzymes of porcine brain hydrolyzing 2-arachidonoylglycerol, an endogenous ligand of cannabinoid receptors. Biochem Pharmacol 57:417–423

    Article  PubMed  CAS  Google Scholar 

  • Grazia Cascio M, Minassi A, Ligresti A, Appendino G, Burstein S, Di Marzo V (2004) A structure-activity relationship study on N-arachidonoyl-amino acids as possible endogenous inhibitors of fatty acid amide hydrolase. Biochem Biophys Res Commun 314:192–196

    Article  PubMed  CAS  Google Scholar 

  • Gubellini P, Picconi B, Bari M, Battista N, Calabresi P, Centonze D, Bernardi G, Finazzi-Agro A, Maccarrone M (2002) Experimental parkinsonism alters endocannabinoid degradation: implications for striatal glutamatergic transmission. J Neurosci 22:6900–6907

    PubMed  CAS  Google Scholar 

  • Herkenham M, Lynn AB, Little MD, Johnson MR, Melvin LS, de Costa BR, Rice KC (1990) Cannabinoid receptor localization in brain. Proc Natl Acad Sci U S A 87:1932–1936

    PubMed  CAS  Google Scholar 

  • Hillard CJ, Jarrahian A (2000) The movement of N-arachidonoylethanolamine (anandamide) across cellular membranes. Chem Phys Lipids 108:123–134

    PubMed  CAS  Google Scholar 

  • Hillard CJ, Jarrahian A (2003) Cellular accumulation of anandamide: consensus and controversy. Br J Pharmacol 140:802–808

    Article  PubMed  CAS  Google Scholar 

  • Hillard CJ, Wilkison DM, Edgemond WS, Campbell WB (1995) Characterization of the kinetics and distribution of N-arachidonylethanolamine (anandamide) hydrolysis by rat brain. Biochim Biophys Acta 1257:249–256

    PubMed  Google Scholar 

  • Hillard CJ, Edgemond WS, Jarrahian A, Campbell WB (1997) Accumulation of N-arachidonoylethanolamine (anandamide) into cerebellar granule cells occurs via facilitated diffusion. J Neurochem 69:631–638

    PubMed  CAS  Google Scholar 

  • Ho SY, Delgado L, Storch J (2002) Monoacylglycerol metabolism in human intestinal Caco-2 cells: evidence for metabolic compartmentation and hydrolysis. J Biol Chem 277:1816–1823

    PubMed  CAS  Google Scholar 

  • Holt S, Nilsson J, Omeir R, Tiger G, Fowler CJ (2001) Effects of pH on the inhibition of fatty acid amidohydrolase by ibuprofen. Br J Pharmacol 133:513–520

    Article  PubMed  CAS  Google Scholar 

  • Huang SM, Bisogno T, Petros TJ, Chang SY, Zavitsanos PA, Zipkin RE, Sivakumar R, Coop A, Maeda DY, De Petrocellis L, Burstein S, Di Marzo V, Walker JM (2001) Identification of a new class of molecules, the arachidonyl amino acids, and characterization of one member that inhibits pain. J Biol Chem 276:42639–42644

    PubMed  CAS  Google Scholar 

  • Huang SM, Bisogno T, Trevisani M, Al-Hayani A, De Petrocellis L, Fezza F, Tognetto M, Petros TJ, Krey JF, Chu CJ, Miller JD, Davies SN, Geppetti P, Walker JM, Di Marzo V (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc Natl Acad Sci USA 99:8400–8405

    PubMed  CAS  Google Scholar 

  • Jarrahian A, Manna S, Edgemond WS, Campbell WB, Hillard CJ (2000) Structure-activity relationships among N-arachidonylethanolamine (Anandamide) head group analogues for the anandamide transporter. J Neurochem 74:2597–2606

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Contreras JA, Hellman U, Tornqvist H, Holm C (1997) cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem 272:27218–27223

    PubMed  CAS  Google Scholar 

  • Karlsson M, Reue K, Xia YR, Lusis AJ, Langin D, Tornqvist H, Holm C (2001) Exon-intron organization and chromosomal localization of the mouse monoglyceride lipase gene. Gene 272:11–18

    Article  PubMed  CAS  Google Scholar 

  • Karttunen P, Saano V, Paronen P, Peura P, Vidgren M (1990) Pharmacokinetics of ibuprofen in man: a single-dose comparison of two over-the-counter, 200 mg preparations. Int J Clin Pharmacol Ther Toxicol 28:251–255

    PubMed  CAS  Google Scholar 

  • Kathuria S, Gaetani S, Fegley D, Valino F, Duranti A, Tontini A, Mor M, Tarzia G, La Rana G, Calignano A, Giustino A, Tattoli M, Palmery M, Cuomo V, Piomelli D (2003) Modulation of anxiety through blockade of anandamide hydrolysis. Nat Med 9:76–81

    Article  PubMed  CAS  Google Scholar 

  • Konrad RJ, Major CD, Wolf BA (1994) Diacylglycerol hydrolysis to arachidonic acid is necessary for insulin secretion from isolated pancreatic islets: sequential actions of diacylglycerol and monoacylglycerol lipases. Biochemistry 33:13284–13294

    Article  PubMed  CAS  Google Scholar 

  • Koutek B, Prestwich GD, Howlett AC, Chin SA, Salehani D, Akhavan N, Deutsch DG (1994) Inhibitors of arachidonoyl ethanolamide hydrolysis. J Biol Chem 269:22937–22940

    PubMed  CAS  Google Scholar 

  • Kuriyan J, Cowburn D (1997) Modular peptide recognition domains in eukaryotic signaling. Annu Rev Biophys Biomol Struct 26:259–288

    Article  PubMed  CAS  Google Scholar 

  • Lang W, Qin C, Hill WA, Lin S, Khanolkar AD, Makriyannis A (1996) High-performance liquid chromatographic determination of anandamide amidase activity in rat brain microsomes. Anal Biochem 238:40–45

    Article  PubMed  CAS  Google Scholar 

  • Leggett JD, Aspley S, Beckett SR, D’Antona AM, Kendall DA (2004) Oleamide is a selective endogenous agonist of rat and human CB1 cannabinoid receptors. Br J Pharmacol 141:253–262

    Article  PubMed  CAS  Google Scholar 

  • Lichtman AH, Hawkins EG, Griffin G, Cravatt BF (2002) Pharmacological activity of fatty acid amides is regulated, but not mediated, by fatty acid amide hydrolase in vivo. J Pharmacol Exp Ther 302:73–79

    Article  PubMed  CAS  Google Scholar 

  • Lio YC, Reynolds LJ, Balsinde J, Dennis EA (1996) Irreversible inhibition of Ca(2+)-independent phospholipase A2 by methyl arachidonyl fluorophosphonate. Biochim Biophys Acta 1302:55–60

    PubMed  Google Scholar 

  • Lopez-Rodriguez ML, Viso A, Ortega-Gutierrez S, Lastres-Becker I, Gonzalez S, Fernandez-Ruiz J, Ramos JA (2001) Design, synthesis and biological evaluation of novel arachidonic acid derivatives as highly potent and selective endocannabinoid transporter inhibitors. J Med Chem 44:4505–4508

    PubMed  CAS  Google Scholar 

  • Lopez-Rodriguez ML, Viso A, Ortega-Gutierrez S, Fowler CJ, Tiger G, de Lago E, Fernandez-Ruiz J, Ramos JA (2003) Design, synthesis and biological evaluation of new endocannabinoid transporter inhibitors. Eur J Med Chem 38:403–412

    PubMed  CAS  Google Scholar 

  • Maccarrone M, Salvati S, Bari M, Finazzi A (2000a) Anandamide and 2-arachidonoylglycerol inhibit fatty acid amide hydrolase by activating the lipoxygenase pathway of the arachidonate cascade. Biochem Biophys Res Commun 278:576–583

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, De Felici M, Bari M, Klinger F, Siracusa G, Finazzi-Agro A (2000b) Down-regulation of anandamide hydrolase in mouse uterus by sex hormones. Eur J Biochem 267:2991–2997

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, Fiorucci L, Erba F, Bari M, Finazzi-Agro A, Ascoli F (2000c) Human mast cells take up and hydrolyze anandamide under the control of 5-lipoxygenase and do not express cannabinoid receptors. FEBS Lett 468:176–180

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, Valensise H, Bari M, Lazzarin N, Romanini C, Finazzi-Agro A (2001a) Progesterone up-regulates anandamide hydrolase in human lymphocytes: role of cytokines and implications for fertility. J Immunol 166:7183–7189

    PubMed  CAS  Google Scholar 

  • Maccarrone M, De Petrocellis L, Bari M, Fezza F, Salvati S, Di Marzo V, Finazzi-Agro A (2001b) Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes. Arch Biochem Biophys 393:321–328

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, Bari M, Battista N, Finazzi-Agro A (2002) Estrogen stimulates arachidonoylethanolamide release from human endothelial cells and platelet activation. Blood 100:4040–4048

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone M, Di Rienzo M, Finazzi-Agro A, Rossi A (2003a) Leptin activates the anandamide hydrolase promoter in human T lymphocytes through STAT3. J Biol Chem 278:13318–13324

    PubMed  CAS  Google Scholar 

  • Maccarrone M, Bari M, Di Rienzo M, Finazzi-Agro A, Rossi A (2003b) Progesterone activates fatty acid amide hydrolase (FAAH) promoter in human T lymphocytes through the transcription factor Ikaros. Evidence for a synergistic effect of leptin. J Biol Chem 278:32726–32732

    PubMed  CAS  Google Scholar 

  • Maccarrone M, DeFelici M, Klinger FG, Battista N, Fezza F, Dainese E, Siracusa G, Finazzi-Agro A (2004) Mouse blastocysts release a lipid which activates anandamide hydrolase in intact uterus. Mol Hum Reprod 10:215–221

    Article  PubMed  CAS  Google Scholar 

  • Maurelli S, Bisogno T, De Petrocellis L, Di Luccia A, Marino G, Di Marzo V (1995) Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma’ anandamide amidohydrolase’. FEBS Lett 377:82–86

    Article  PubMed  CAS  Google Scholar 

  • McKinney MK, Cravatt BF (2003) Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase. J Biol Chem 278:37393–37399

    Article  PubMed  CAS  Google Scholar 

  • Mechoulam R, Fride E, Hanus L, Sheskin T, Bisogno T, Di Marzo V, Bayewitch M, Vogel Z (1997) Anandamide may mediate sleep induction. Nature 389:25–26

    Article  PubMed  CAS  Google Scholar 

  • Mendelson WB, Basile AS (1999) The hypnotic actions of oleamide are blocked by a cannabinoid receptor antagonist. Neuroreport 10:3237–3239

    PubMed  CAS  Google Scholar 

  • Ortar G, Ligresti A, De Petrocellis L, Morera E, Di Marzo V (2003) Novel selective and metabolically stable inhibitors of anandamide cellular uptake. Biochem Pharmacol 65:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Patel S, Wohlfeil ER, Rademacher DJ, Carrier EJ, Perry LJ, Kundu A, Falck JR, Nithipatikom K, Campbell WB, Hillard CJ (2003) The general anesthetic propofol increases brain N-arachidonylethanolamine (anandamide) content and inhibits fatty acid amide hydrolase. Br J Pharmacol 139:1005–1013

    Article  PubMed  CAS  Google Scholar 

  • Patricelli MP, Cravatt BF (1999) Fatty acid amide hydrolase competitively degrades bioactive amides and esters through a nonconventional catalytic mechanism. Biochemistry 38:14125–14130

    PubMed  CAS  Google Scholar 

  • Patricelli MP, Cravatt BF (2000) Clarifying the catalytic roles of conserved residues in the amidase signature family. J Biol Chem 275:19177–19184

    Article  PubMed  CAS  Google Scholar 

  • Patricelli MP, Lovato MA, Cravatt BF (1999) Chemical and mutagenic investigations of fatty acid amide hydrolase: evidence for a family of serine hydrolases with distinct catalytic properties. Biochemistry 38:9804–9812

    PubMed  CAS  Google Scholar 

  • Piomelli D, Beltramo M, Glasnapp S, Lin SY, Goutopoulos A, Xie XQ, Makriyannis A (1999) Structural determinants for recognition and translocation by the anandamide transporter. Proc Natl Acad Sci U S A 96:5802–5807

    Article  PubMed  CAS  Google Scholar 

  • Porter AC, Sauer JM, Knierman MD, Becker GW, Berna MJ, Bao J, Nomikos GG, Carter P, Bymaster FP, Leese AB, Felder CC (2002) Characterization of a novel endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 301:1020–1024

    Article  PubMed  CAS  Google Scholar 

  • Pratt PF, Hillard CJ, Edgemond WS, Campbell WB (1998) N-arachidonylethanolamide relaxation of bovine coronary artery is not mediated by CB1 cannabinoid receptor. Am J Physiol 274:H375–381

    PubMed  CAS  Google Scholar 

  • Puffenbarger RA, Kapulina O, Howell JM, Deutsch DG (2001) Characterization of the 5’-sequence of the mouse fatty acid amide hydrolase. Neurosci Lett 1314:21–24

    Google Scholar 

  • Riendeau D, Guay J, Weech PK LF, Yergey J, Li C, Desmarais S, Perrier H, Liu S, Nicoll-Griffith D, et al (1994) Arachidonyl trifluoromethyl ketone, a potent inhibitor of 85-kDa phospholipase A2, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by calcium ionophore-challenged platelets. J Biol Chem 269:15619–15624

    PubMed  CAS  Google Scholar 

  • Rodriguez de Fonseca F, Navarro M, Gomez R, Escuredo L, Nava F, Fu J, Murillo-Rodriguez E, Giuffrida A, LoVerme J, Gaetani S, Kathuria S, Gall C, Piomelli D (2001) An anorexic lipid mediator regulated by feeding. Nature 414:209–212

    Google Scholar 

  • Ronesi J, Gerdeman GL, Lovinger DM (2004) Disruption of endocannabinoid release and striatal long-term depression by postsynaptic blockade of endocannabinoid membrane transport. J Neurosci 24:1673–1679

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Llorente L, Ortega-Gutierrez S, Viso A, Sanchez MG, Sanchez AM, Fernandez C, Ramos JA, Hillard C, Lasuncion MA, Lopez-Rodriguez ML, Diaz-Laviada I (2004) Characterization of an anandamide degradation system in prostate epithelial PC-3 cells: synthesis of new transporter inhibitors as tools for this study. Br J Pharmacol 141:457–467

    Article  PubMed  CAS  Google Scholar 

  • Saario SM, Savinainen JR, Laitinen JT, Jarvinen T, Niemi R (2004) Monoglyceride lipase like enzymatic activity is responsible for hydrolysis of 2-arachidonoylglycerol in rat cerebellar membranes. Biochem Pharmacol 167:1381–1387

    Google Scholar 

  • Sakurada T, Noma A (1981) Subcellular localization and some properties of monoacylglycerol lipase in rat adipocytes. J Biochem (Tokyo) 90:1413–1419

    PubMed  CAS  Google Scholar 

  • Shrestha R, Dixon RA, Chapman KD (2003) Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana. J Biol Chem 278:34990–34997

    Article  PubMed  CAS  Google Scholar 

  • Somma-Delpero C, Valette A, Lepetit-Thevenin J, Nobili O, Boyer J, Verine A (1995) Purification and properties of a monoacylglycerol lipase in human erythrocytes. Biochem J 312:519–525

    PubMed  CAS  Google Scholar 

  • Street I, Lin H, Laliberte F, Ghomashchi F, Wang Z, Perrier H, Tremblay N, Huang Z, Weech P, Gelb M (1993) Slow-and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry 32:5935–5940

    Article  PubMed  CAS  Google Scholar 

  • Tarzia G, Duranti A, Tontini A, Piersanti G, Mor M, Rivara S, Plazzi PV, Park C, Kathuria S, Piomelli D (2003) Design, synthesis, and structure-activity relationships of alkylcarbamic acid aryl esters, a new class of fatty acid amide hydrolase inhibitors. J Med Chem 46:2352–2360

    Article  PubMed  CAS  Google Scholar 

  • Thomas EA, Cravatt BF, Danielson PE, Gilula NB, Sutcliffe JG (1997) Fatty acid amide hydrolase, the degradative enzyme for anandamide and oleamide, has selective distribution in neurons within the rat central nervous system. J Neurosci Res 50:1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Tornqvist H, Belfrage P (1976) Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue. J Biol Chem 251:813–819

    PubMed  CAS  Google Scholar 

  • Tsou K, Nogueron MI, Muthian S, Sanudo-Pena MC, Hillard CJ, Deutsch DG, Walker JM (1998) Fatty acid amide hydrolase is located preferentially in large neurons in the rat central nervous system as revealed by immunohistochemistry. Neurosci Lett 254:137–140

    Article  PubMed  CAS  Google Scholar 

  • Ueda N, Kurahashi Y, Yamamoto S, Tokunaga T (1995) Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem 270:23823–23827

    PubMed  CAS  Google Scholar 

  • Ueda N, Puffenbarger RA, Yamamoto S, Deutsch DG (2000) The fatty acid amide hydrolase (FAAH). Chem Phys Lipids 108:107–121

    Article  PubMed  CAS  Google Scholar 

  • Valenti M, Vigano D, Casico MG, Rubino T, Steardo L, Parolaro D, Di Marzo V (2004) Differential diurnal variations of anandamide and 2-arachidonoyl-glycerol levels in rat brain. Cell Mol Life Sci 61:945–950

    Article  PubMed  CAS  Google Scholar 

  • Vyvoda OS, Rowe CE (1973) Glyceride lipases in nerve endings of guinea-pig brain and their stimulation by noradrenaline, 5-hydroxytryptamine and adrenaline. Biochem J 132:233–248

    PubMed  CAS  Google Scholar 

  • Waleh NS, Cravatt BF, Apte-Deshpande A TA, Kilduff TS (2002) Transcriptional regulation of the mouse fatty acid amide hydrolase gene. Gene 291:203–210

    Article  PubMed  CAS  Google Scholar 

  • Witting A, Walter L, Wacker J, Moller T, Stella N (2004) P2X7 receptors control 2-arachidonoylglycerol production by microglial cells. Proc Natl Acad Sci U S A 101:3214–3219

    Article  PubMed  CAS  Google Scholar 

  • Xiao AZ, Zhao YG, Duan EK (2002) Expression and regulation of the fatty acid amide hydrolase gene in the rat uterus during the estrous cycle and peri-implantation period. Mol Hum Reprod 8:651–658

    Article  PubMed  CAS  Google Scholar 

  • Yazulla S, Studholme KM, McIntosh HH, Deutsch DG (1999) Immunocytochemical localization of cannabinoid CB1 receptor and fatty acid amide hydrolase in rat retina. J Comp Neurol 415:80–90

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Ho, WS.V., Hillard, C.J. (2005). Modulators of Endocannabinoid Enzymic Hydrolysis and Membrane Transport. In: Pertwee, R.G. (eds) Cannabinoids. Handbook of Experimental Pharmacology, vol 168. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26573-2_6

Download citation

Publish with us

Policies and ethics