Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 55))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bouchez A, Hospital F, Caussee M, Gaillais A, Charcosset A (2002) Marker-assisted introgression favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959

    PubMed  Google Scholar 

  • Coe E, Cone K, McMullen M, Chen S, Davis G, Gardiner J, Liscum E, Polacco M, Paterson A, Sanchez-Villeda H, Soderlund C, Wing R (2002) Access to the maize genome: an integrated physical and genetic map. Plant Physiol 128:9–12

    Article  PubMed  Google Scholar 

  • Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Genet Rev 3:22–32

    Article  Google Scholar 

  • Dreher K, Khairallah M, Ribaut J-M, Morris M (2003) Money matters (I): costs of field and laboratory procedures associated with conventional and marker-assisted maize breeding at CIMMYT. Mol Breed 11:221–234

    Article  Google Scholar 

  • Dudley JW (1993) Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Sci 33:660–668

    Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution, and types of gene action. Genetics 116:113–125

    PubMed  Google Scholar 

  • Gardiner J, Melia-Hancock S, Hoisington DA, Chao S, Coe EH (1993) Development of a core RFLP map in maize using an immortalized-F2 population. Genetics 134:917–930

    PubMed  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769

    Article  Google Scholar 

  • Hoisington D (1992) Maize as a model system. In: Chapman GP (ed) Grass evolution and domestication. Cambridge Univ Press, London

    Google Scholar 

  • Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A (1997) More on the efficiency of marker-assisted selection. Theor Appl Genet 95:1181–1189

    Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  Google Scholar 

  • Jiang C, Zeng Z-B (1995) Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140:1111–1127

    PubMed  Google Scholar 

  • Khavkin E, Coe E (1997) Mapped demonic locations for developmental functions and QTLs reflect concerted groups in maize (Zea mays L.). Theor Appl Genet 95:343–352

    Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  Google Scholar 

  • Lee J-M, Williams ME, Tingey SV, Rafalski JA (2002) DNA array profiling of gene expression changes during maize embryo development. Funct Integr Genom 2:13–27

    Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) QTL mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–402

    PubMed  Google Scholar 

  • Moreau L, Charcosset A, Hospital F, Gallais A (1998) Marker-assisted selection efficiency in populations of finite size. Genetics 148:1353–1365

    PubMed  Google Scholar 

  • Moreau L, Lemarié S, Charcosset A, Gallais A (2000) Economic efficiency of one cycle of marker-assisted selection. Crop Sci 40:329–337

    Google Scholar 

  • Morris M, Dreher K, Ribaut J-M, Khairallah M (2003) Money matters (II): costs of maize inbred line conversion schemes at CIMMYT using conventional and marker-assisted selection. Mol Breed 11:235–247

    Google Scholar 

  • Ragot M, Hoisington DA (1993) Molecular markers for plant breeding: comparisons of RFLP and RAPD genotyping costs. Theor Appl Genet 86:975–984

    Article  Google Scholar 

  • Ragot M, Biasiolli M, Delbut MF, Dell'orco A, Malgarina L, Thevenin P, Vernoy J, Vivant J, Zimmermann R, Gay G (1994) Marker-assisted backcrossing: a practical example. In: Bervillé A, Tersac M (eds) Techniques et utilisations des marqueurs moléculaires. Les colloques 72. INRA, Versailles, France, pp 45–56

    Google Scholar 

  • Ribaut J-M, Hoisington DA (1998) Marker-assisted selection: new tools and strategies. Trends Plant Sci 3:236–239

    Article  Google Scholar 

  • Ribaut J-M, Betrán J (1999) Single large-scale marker-assisted selection (SLS-MAS). Mol Breed 5:531–541

    Google Scholar 

  • Ribaut J-M, Hoisington DA, Deutsch JA, Jiang C, González-de-León D (1996) Identification of quantitative trait loci under drought conditions in tropical maize I. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  Google Scholar 

  • Ribaut J-M, Jiang C, González-de-León D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought conditions in tropical maize II. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Google Scholar 

  • Ribaut J-M, Jiang C, Hoisington D (2002) Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Sci 42:557–565

    Google Scholar 

  • Schön CC, Melchinger AE, Boppenmaier J, Brunklaus-Jung E, Herrmann RG, Seitzer JF (1994) RFLP mapping in maize: Quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci 34:378–389

    Google Scholar 

  • Stuber CW (1995) Mapping and manipulating quantitative traits in maize. Trends Genet 11:477–481

    PubMed  Google Scholar 

  • Stuber CW, Polacco M, Senior ML (1999) Synergy of empirical breeding, marker-assisted selection, and genomics to increase yield potential. Crop Sci 39:1571–1583

    Google Scholar 

  • Thoday JM (1961) Location of polygenes. Nature 191:368–370

    Google Scholar 

  • Utz HF, Schön CC, Melchinger AE (1994) Markergestützte Selektion auf Qualitätsmerkmale mittels RFLP in einem Körnermaisexperiment. Arbeitstagung der Arbeitsgemeinschaft der Saatzuchtleiter in Gumpenstein 1993, pp 69–74

    Google Scholar 

  • Utz HF, Melchinger AE, Schön CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by QTL determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Van Berloo R, Stam P (1998) Marker-assisted selection in autogamous RIL populations: a simulation study. Theor Appl Genet 96:147–154

    Article  Google Scholar 

  • Van Berloo R, Stam P (1999) Comparison between marker-assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor Appl Genet 98:113–118

    Article  Google Scholar 

  • Whittaker JC (2001) Marker-assisted selection and introgression. In: Balding DJ, Bishop M, Cannings C (eds) Handbook of statistical genetics, Wiley, New York, pp 673–693

    Google Scholar 

  • Willcox MC, Khairallah MM, Bergvinson D, Crossa J, Deutsch JA, Edmeades GO, González-de-León D, Jiang C, Jewell DC, Mihm JA, Williams WP, Hoisington D (2002) Selection for resistance to Southwestern Corn Borer using marker-assisted and conventional backcrossing. Crop Sci 42:1516–1528

    Google Scholar 

  • Yousef GG, Juvik JA (2001) Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41:645–655

    Google Scholar 

  • Yu K, Park SJ, Poysa V (2000) Marker-assisted selection of common bean for resistance to common bacterial blight: efficacy and economics. Plant Breed 119:411–415

    Article  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoisington, D., Melchinger, A. (2004). From Theory to Practice: Marker-Assisted Selection in Maize. In: Lörz, H., Wenzel, G. (eds) Molecular Marker Systems in Plant Breeding and Crop Improvement. Biotechnology in Agriculture and Forestry, vol 55. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26538-4_20

Download citation

Publish with us

Policies and ethics