Skip to main content

Fractals in Geophysics and Seismology: An Introduction

  • Chapter
Fractal Behaviour of the Earth System

Summary

Many aspects of nature are very much complex to understand and this has started a new science of geometrical complexity, known as ‘Fractal Geometry’. Various studies carried out across the globe reveal that many of the Earth’s processes satisfy fractal statistics, where examples range from the frequency-size statistics of earthquakes to the time series of the Earth’s magnetic field. The scaling property of fractal signal is very much appealing for descriptions of many geological features. Based on well-log measurements, Earth’s physical properties have been found to exhibit fractal behaviour. Many authors have incorporated this finding in various geophysical techniques to improve their interpretive utility. The aim of present chapter is to briefly discuss the fractal behaviour of the Earth system and the underlying mechanism by citing some examples from potential field and seismology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K (1995) Modelling of runup heights of Hokkaido-Nansei-Oki tsunami of 12July 1993. Pure Appl Geophys 145:735–745

    Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38: 364–374

    Article  Google Scholar 

  • Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: An explanation of 1/f noise. Phys Rev Lett 59: 381–384

    Article  Google Scholar 

  • Bansal AR, Dimri VP (1999) Gravity evidence for mid crustal structure below Delhi fold belt and Bhilwara super group of western India. Geophys Res Lett 26: 2793–2795

    Article  Google Scholar 

  • Bansal AR, Dimri VP (2001) Depth estimation from the scaling power spectral density of nonstationary gravity profile. Pure Appl Geophys 158: 799–812

    Google Scholar 

  • Burrough MS, Tebbens SF (2005) Power-law scaling and probalistic forecasting of tsunami runup heights. Pure Appl Geophys 162:331–342

    Google Scholar 

  • Choi BH, Pelinovsky E, Ryabov I, Hong SJ (2002) Distribution functions of Tsunami wave heights. Natural Hazards 25:1–21

    Article  Google Scholar 

  • Christensen K, Danon L, Scanlon T, Bak P (2002) Unified scaling law for earthquakes. Proc Natl Acad Sci USA 99:2509–2513

    Article  Google Scholar 

  • Constable SC, Parker RL, Constable CG (1987) Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52: 289–300

    Article  Google Scholar 

  • De Rubies V, Dimitriu P, Papa Dimtriu E, Tosi P (1993) Recurrent patterns in the spatial behavior of Italian seismicity revealed by the fractal approach. Geophys Res Lett 20:1911–1914

    Google Scholar 

  • Dimri VP (1992) Deconvolution and inverse theory, Elsevier Science Publishers, Amsterdam London New York Tokyo

    Google Scholar 

  • Dimri VP (1998) Fractal behavior and detectibility limits of geophysical surveys. Geophysics 63:1943–1946

    Article  Google Scholar 

  • Dimri VP (2000) Application of fractals in earth science. AA Balkema, USA and Oxford IBH Publishing Co New Delhi

    Google Scholar 

  • Dimri VP (2005) Tsunami wave modeling using fractals and finite element technique for irregular coastline and uneven bathymetries. Natl workshop on formulation of science plan for coastal hazard preparedness (18–19 Feb) NIO, Goa, India

    Google Scholar 

  • Dimri VP, Nimisha V, Chattopadhyay S (2005) Fractal analysis of aftershock sequence of Bhuj earthquake — a wavelet based approach. Curr Sci (in press)

    Google Scholar 

  • Fedi M (2003) Global and local multiscale analysis of magnetic susceptibility data. Pure Appl Geophys 160: 2399–2417

    Article  Google Scholar 

  • Fedi M, Quarta T, Santis AD (1997) Inherent power-law behavior of magnetic field power spectra from a Spector and Grant ensemble. Geophysics 62:1143–1150

    Google Scholar 

  • Frisch U, Parisi G (1985) Fully developed turbulence and intermittency. In: Ghill M (ed) Turbulence and predictability in geophysical fluid dynamics and climate dynamics, North Holland, Amsterdam, pp 84

    Google Scholar 

  • Grant FS (1985) Aeromagnetics, geology and ore environments 1. Magnetite in igneous, sedimentary and metamorphic rocks: An overview. Geoexploration 23:303–333

    Google Scholar 

  • Gregotski ME, Jensen OG, Arkani-Hamed J (1991) Fractal stochastic modeling of aeromagnetic data. Geophysics 56:1706–1715

    Article  Google Scholar 

  • Grossmann A, Morlet J (1984) Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736

    Article  Google Scholar 

  • Gupta HK (2005) A Note on the 26 December 2004 tsunami in the Indian ocean. J Geol Soc India 65: 247–248

    Google Scholar 

  • Hanken H (1983) Advanced synergetics: Instability hierarchies of self-organizing systems and devices, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hirabayashi T, Ito K, Yoshi (1992) Multifractal analysis of earthquakes. Pure Appl Geophys 138: 591–610

    Article  Google Scholar 

  • Hirata T, Imoto M (1991) Multifractal analysis of spatial distribution of micro earthquakes in the Kanto region. Geophys J Int 107:155–162

    Google Scholar 

  • Hirata T, Sato T, Ito K (1987) Fractal structure of spatial distribution of microfracturing in rock. Geophys J R A Soc 90:369–374

    Google Scholar 

  • Kagan YY, Knopoff L(1980) Spatial distribution of earthquakes. The two point correlation function. Geophys J R A Soc 62:303–320

    Google Scholar 

  • Kanamori H, Anderson DL(1975) Theoretical basis of some empirical relations in seismology. Bull Seis Soc America 65:1073–1095

    Google Scholar 

  • Korvin G (1992) Fractal models in the earth sciences. Elsevier Science Publishers, Amsterdam London New York Tokyo

    Google Scholar 

  • Kowalik Z (2003) Basic relations between tsunamis calculation and their physics— II. Sci Tsunami Haz 21: 154–173

    Google Scholar 

  • Kowalik Z, Murty TS (1993a) Numerical modeling of ocean dynamics. World Sci Publ, Singapore New Jersey London Hong Kong

    Google Scholar 

  • Kowalik Z, Murty TS (1993b) Numerical simulation of two-dimensional tsunami runup. Marine Geodesy 16: 87–100

    Article  Google Scholar 

  • Lovejoy S, Schertzer S, Ladoy P (1986) Fractal characterization of homogeneous geophysical measuring network. Nature 319:43–44

    Article  Google Scholar 

  • Malamud BD, Turcotte DL (1999) Self affine time series I: generation and analysis. In: Dmowska R, Saltzman B (ed.) Advances in Geophysics: Long Range Persistence in Geophysical Time Series, vol 40. Academic Press, San Diego, pp 1–87

    Google Scholar 

  • Mandal P, Mabawonku AO, Dimri VP (2005) Self-organized fractal seismicity of reservoir triggered earthquakes in the Koyna-Warna seismic zone, Western India. Pure Appl Geophys 162: 73–90

    Google Scholar 

  • Mandelbrot BB (1983) The Fractal Geometry of Nature. WH Freeman & Company, New York

    Google Scholar 

  • Mandelbrot BB (1989) Mulifractal measures, especially for geophysicists. In: Scholz CH, Mandelbrot BB (eds) Fractals in geology and geophysics, Berkhäuser Verlag, Basel, pp 5–42

    Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM rev.10:422–437

    Article  Google Scholar 

  • Maus S (1999) Variogram analysis of magnetic and gravity data. Geophysics 64:776–784

    Google Scholar 

  • Maus S, Dimri VP (1994) Fractal properties of potential fields caused by fractal sources. Geophys Res Lett 21: 891–894

    Article  Google Scholar 

  • Maus S, Dimri VP (1995) Potential field power spectrum inversion for scaling geology. J Geophys Res 100: 12605–12616

    Article  Google Scholar 

  • Maus S, Dimri V (1996) Depth estimation from the scaling power spectrum of potential fields? Geophys J Int 124: 113–120

    Google Scholar 

  • Maus S, Gordon D, Fairhead JD(1997) Curie-depth estimation using a self-similar magnetization model. Geophys J Int 129:163–168

    Google Scholar 

  • Mofjeld HO, Gonzalez FI, Newman JC (1999) Tsunami prediction in coastal regions. In: Mooers CNK (ed) Coastal ocean prediction, Am Geohys Union, Washington DC, pp 353–375

    Google Scholar 

  • Moharir PS (2000) Multifractals. In: Dimri VP (ed) Application of fractals in earth sciences AA Balkema, USA Oxford IBH Pub Co New Delhi, pp 46–57

    Google Scholar 

  • Naidu P (1968) Spectrum of the potential field due to randomly distributed sources, Geophysics 33: 337–345

    Google Scholar 

  • Omori (1894) On aftershocks. Rep Imp Earthq Investig Comm 2:103–139 (in Japanese)

    Google Scholar 

  • Ouchi T, Uekawa T (1986) Statistical analysis of the spatial distribution of earthquakes before and after large earthquakes. Phys Earth Planet Int 44: 211–225

    Google Scholar 

  • Pelinovsky EN (1989) Tsunami climbing a beach and Tsunami zonation. Sci Tsunami Haz 7:117–123

    Google Scholar 

  • Peterson I (1984) Ants in the Labyrinth and other fractal excursions. Science News 125: 42–43

    Google Scholar 

  • Pilkington M (1997) 3-D magnetic imaging using conjugate gradients. Geophysics 62:1132–1142

    Article  Google Scholar 

  • Pilkington M, Todoeschuck JP (1990) Stochastic inversion for scaling geology. Geophys J Int 102:205–217

    Google Scholar 

  • Pilkington M, Todoeschuck JP (1991) Naturally smooth inversions with a priori information from well logs. Geophysics 56:1811–1818

    Article  Google Scholar 

  • Pilkington M, Todoeschuck JP (1993) Fractal magnetization of continental crust. Geophys Res Lett 20: 627–630

    Google Scholar 

  • Pilkington M, Todoeschuck JP (1995) Scaling nature of crustal susceptibilities. Geophys Res Lett 22: 779–782

    Article  Google Scholar 

  • Pilkington M, Todoeschuck JP (2004) Power-law scaling behavior of crustal density and gravity. Geophys Res Lett 31: L09606, doi: 10.1029/2004GL019883

    Article  Google Scholar 

  • Pilkington M, Gregotski ME, Todoeschuck JP (1994) Using fractal crustal magnetization models in magnetic interpretation. Geophys Prosp 42:677–692

    Google Scholar 

  • Quarta T, Fedi M, Santis AD (2000) Source ambiguity from an estimation of the scaling exponent of potential field power spectra. Geophys J Int 140: 311–323

    Article  Google Scholar 

  • Raju PS, Raghavan RV, Umadevi E, Shashidar D, Sarma ANS, Gurunath D, Satyanarayana HVS, Rao TS, Naik RTB, Rao NPC, Kamuruddin Md, Gowri Shankar U, Gogi NK, Baruah BC, Bora NK Kousalya M, Sekhar M, Dimri VP(2005) A note on 26 December,2004 Great Sumatra Earthquake. J Geol Soc India 65: 249–251

    Google Scholar 

  • Ravi Prakash M, Dimri VP (2000) Distribution of the aftershock sequence of Latur earthquake in time and space by fractal approach. J Geol Soc India 55: 167–174

    Google Scholar 

  • Saggaf M, Toksoz M (1999) An analysis of deconvolution: Modeling reflectivity by fractionally integrated noise. Geophysics 64:1093–1107

    Article  Google Scholar 

  • Spector A, Grant FS (1970) Statistical models for interpreting magnetic data. Geophysics 35:293–302

    Google Scholar 

  • Sunmonu LA, Dimri VP, Ravi Prakash M, Bansal AR (2001), Multifractal approach of the time series of M ≥ 7 earthquakes in Himalayan region and its vicinity during 1985–1995. J Geol Soc India 58: 163–169

    Google Scholar 

  • Thorarinsson, F, Magnusson SG (1990) Bouguer density determination by fractal analysis. Geophysics 55: 932–935

    Article  Google Scholar 

  • Todoeschuck JP, Jensen OG (1988) Joseph geology and scaling deconvolution. Geophysics 53:1410–1411

    Article  Google Scholar 

  • Todoeschuck JP, Jensen OG (1989) Scaling geology and seismic deconvolution. Pure Appl. Geophys 131: 273–288

    Article  Google Scholar 

  • Toverud T, Dimri VP, Ursin B (2001) Comparison of deconvolution methods for scaling reflectivity. Jour Geophy 22:117–123

    Google Scholar 

  • Tubman KM, Crane SD (1995) Vertical versus horizontal well log variability and application to fractal reservoir modeling. In: Barton CC, LaPointe PR (eds) Fractals in Petroleum Geology and Earth Sciences, Plenum press, New York, pp 279–294

    Google Scholar 

  • Turcotte DL (1989) Fractals in geology and geophysics. In: Scholz CH, Mandelbrot BB (eds) Frcatals in Geophysics, Berkhäuser Verlag, Basel, pp 171–196

    Google Scholar 

  • Turcotte DL (1992) Fractals and chaos in geology and geophysics. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dimri, V. (2005). Fractals in Geophysics and Seismology: An Introduction. In: Dimri, V.P. (eds) Fractal Behaviour of the Earth System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26536-8_1

Download citation

Publish with us

Policies and ethics