Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 1137 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6.1.6 Literatur

  • Alsan BH, Schultheiss TM (2002) Regulation of avian cardiogenesis by FGF8 signaling. Development 129:1935–1943

    PubMed  CAS  Google Scholar 

  • An RH, Davies MP, Doevendans PA, Kubalak SW, Bangalore R, Chien KR, Kass RS (1996) Developmental changes of the β-adrenergic modulation of L-type Ca2+ Channels in embryonic mouse. Circ Res 78:371–378

    PubMed  CAS  Google Scholar 

  • Andersen G, Qvigstad E, Schiander I, Aass H, Osnes JB, Skomedal T (2002) Alpha(l)-AR-induced positive inotropic response in heart is dependent on myosin light chain phosphorylation. Am J Physiol Heart Circ Physiol 283:H1471–H1480

    CAS  PubMed  Google Scholar 

  • Anderson PA, Kleinman CS, Listre G, Talner NS (1998) Cardiovascular function during normal fetal and neonatal development and with hypoxic stress. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology. Saunders, Philadelphia, 2nd edn. pp 837–890

    Google Scholar 

  • Anderson RH (2002) Myocardium and development. In: Anderson RH, Baker EJ, Macartney FJ, Rigby ML, Shinebourne EA, Tynan M (eds) Paediatric cardiology, 2nd edn. Livingstone, London, pp 235–273

    Google Scholar 

  • Arnal LE, Stein F (2003) Pediatric septic shock: why has mortality decreased-the utility of goal-directed therapy. Semin Pediatr Infect Dis 14:165–172

    Article  PubMed  Google Scholar 

  • Ascuitto RJ, Ross-Ascuitto NT (1996) Substrate metabolism in the developing heart. Sem Perinatol 20:542–563

    Article  CAS  Google Scholar 

  • Ashrafian H, Redwood C, Blair E, Watkins H (2003) hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet 19: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Balaguru D, Haddock PS, Puglisi JL, Bers DM, Coetzee WA, Artman M (1997) Role of sarcoplasmic reticulum in contraction and relaxation of immature rabbit ventricular myocytes. J Mol Cell Cardiol 29:2747–2757

    Article  PubMed  CAS  Google Scholar 

  • Baldini A (2002) DiGeorge syndrome: the use of model organisms to dissect complex genetics. Hum Mol Genet 11:2363–2369

    Article  PubMed  CAS  Google Scholar 

  • Bamford RN, Roessler E, Burdine RD et al. (2000) Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat Genet 26:365–369

    Article  PubMed  CAS  Google Scholar 

  • Barnett JV, Desgrosellier JS (2003) Early events in valvulogenesis: a signaling perspective. Birth Defects Res C 69:58–72

    Article  CAS  Google Scholar 

  • Bartram U, Molin DG, Wisse LJ et al. (2001) Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice Circulation 103:2745–2752

    PubMed  CAS  Google Scholar 

  • Beinlich CJ, Rissinger CJ, Morgan HE (1995) Mechanisms of rapid growth in the neonatal pig heart. J Mol Cell Cardiol 27:273–281

    Article  PubMed  CAS  Google Scholar 

  • Beinlich CJ, Vitkauskas KJ, Morgan HE (1998) Characterization of ventricular myocytes from the newborn pig heart. J Mol Cell Cardiol 30:1263–1274

    Article  PubMed  CAS  Google Scholar 

  • Bell JM, Slotkin TA (1988) Postnatal nutritional status influences development of cardiac adrenergic binding sites. Brain Res Bull 21:893–896

    Article  PubMed  CAS  Google Scholar 

  • Beltrami AP, Barlucchi L, Torella D et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    Article  PubMed  CAS  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–204

    Article  PubMed  CAS  Google Scholar 

  • Bishopric NH (2002) Angiotensin signaling and apoptosis in the neonatal heart: necessary evils? Pediatr Res 52:322–325

    Article  PubMed  Google Scholar 

  • Black BL, Olson EN (1999) Control of cardiac development by the mef2 family of transcription factors. In: Harvey RP, Rosenthal N (eds) Heart development. Academic Press, San Diego, pp 131–142

    Chapter  Google Scholar 

  • Blaustein MP, Lederer WJ (1999) Sodium/Kalzium exchange: its physiological implications. Physiol Rev 79:763–854

    PubMed  CAS  Google Scholar 

  • Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729

    PubMed  CAS  Google Scholar 

  • Bozkurt B, Mann DL (2003) Use of biomarkers in the management of heart failure: Are we there yet? Circulation 107:1231–1233

    Article  PubMed  Google Scholar 

  • Brand M, Kempf H, Paul M, Corvol P, Casc JM (2002) Expression of endothelins in human cardiogenesis. J Mol Med 80:715–723

    Article  PubMed  CAS  Google Scholar 

  • Brand T (2003) Heart development: molecular insights into cardiac specification and early morphogenesis. Dev Biol 258:1–19

    Article  PubMed  CAS  Google Scholar 

  • Brice G, Mansour S, Bell R et al. (2002) Analysis of the phenotypic abnormalities in lymphoedema distichiasis syndrome in 74 patients with FOXC2 mutations or linkage to 16q24. J Med Genet 39:478–483

    Article  PubMed  CAS  Google Scholar 

  • Bristow MR (2000) Mechanistic and clinical rationales for using β-blockers in heart failure. J Card Fail 6:8–14

    Article  PubMed  CAS  Google Scholar 

  • Brodde OE, Michel MC (1999) Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51:651–689

    PubMed  CAS  Google Scholar 

  • Brodde OE, Zerkowski HR, Schranz D et al. (1995) Age-dependent changes in the β-adrenoceptor-G-protein-adenylyl cyclasesystem in human right atrium. J Cardiovasc Pharmacol 26:20–26

    Article  PubMed  CAS  Google Scholar 

  • Brodde OE, Bruck H, Leineweber K, Seyfarth T (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538

    Article  PubMed  CAS  Google Scholar 

  • Brown CB, Boyer AS, Runyan RB, Barnett JV (1999) Requirement of type III TGF-beta receptor for endocardial transformation in the heart. Science 283:2080–2082

    Article  PubMed  CAS  Google Scholar 

  • Bruneau BG (2002) Transcriptional regulation of vertebrate cardiac morphogenesis. Circ Res 90:509–519

    Article  PubMed  Google Scholar 

  • Bruneau BG (2003) The developing heart and congenital heart defects: a make or break situation. Clin Genet 63:252–261

    Article  PubMed  CAS  Google Scholar 

  • Buchhorn R, Hulpke-Wette M, Ruschewski W et al. (2003) Effects of therapeutic beta blockade on myocardial function and cardiac remodeling in congenital cardiac disease. Cardiol Young 13:36–43

    Article  PubMed  Google Scholar 

  • Buchhorn R, Ross RD, Wessel A, Hulpke-Wette M, Bürsch J (2001) Activity of the rennin-angiotensin-aldosterone and sympathetic nervous system and their relation to hemodynamic and clinical abnormalities in infants with left-to right-shunts. Int J Cardiol 70:225–230

    Article  Google Scholar 

  • Burggren W, Crossley DA (2002) Comparative cardiovascular development: improving the conceptual framework. Comp Biochem Physiol A Mol Integr Physiol 132:661–674

    Article  PubMed  Google Scholar 

  • Bushdid PB, Osinska H, Waclaw RR, Molkentin JD, Yutzey KE (2003) NFATc3 and NFATc4 are required for cardiac development and mitochondrial function. Circ Res 92:1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Camenisch TD, Spicer AP, Brehm-Gibson T et al. (2000) Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 106:349–360

    Article  PubMed  CAS  Google Scholar 

  • Camenisch TD, Molin DG, Person A, Runyan RB, Gittenberger-de Groot AC, McDonald JA, Kiewer SE (2002 a) Temporal and distinct TGF beta ligand requirements during mouse and avian endocardial cushion morphogenesis. Dev Biol 248:170–181

    Article  PubMed  CAS  Google Scholar 

  • Camenisch TD, Schroeder JA, Bradley J, Kiewer SE, McDonald JA (2002b) Heart-valve formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med 8:850–855

    PubMed  CAS  Google Scholar 

  • Capdevila J, Vogan KJ, Tabin CJ, Belmonte JC (2000) Mechanisms of left-right determination in vertebrates (review). Cell 101:9–21

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  • Charité J, McFadden DG, Merlo G et al. (2001) Role of Dlx6 in regulation of an endothelin-1-dependent, dHAND branchial arch enhancer. Genes Dev 15:3039–3049

    Article  PubMed  Google Scholar 

  • Chen F, Kook H, Milewski R et al. (2002) Hop is an unusual homeobox gene that modulates cardiac development. Cell 110:713–723

    Article  PubMed  CAS  Google Scholar 

  • Chien KR, Olson EN (2002) Converging pathways and principles in heart development and disease: CV@CSH. Cell 110:153–162

    Article  PubMed  CAS  Google Scholar 

  • Chin TK, Christiansen GA, Caldwell JG, Thorburn J (1997) Contribution of the sodium-calcium exchanger to contractions in immature rabbit ventricular myocytes. Pediatr Res 41:480–485

    Article  PubMed  CAS  Google Scholar 

  • Choi JH, Yoo KH, Cheon HW et al. (2002) Angiotensin converting enzyme inhibition decreases cell turnover in the neonatal rat heart. Pediatr Res 52:325–332

    Article  PubMed  CAS  Google Scholar 

  • Clouthier DE, Hosoda K, Richardson JA et al. (1998) Cranial and cardiac neural crest defects in endothelin-A receptor deficient mice. Development 125:813–824

    PubMed  CAS  Google Scholar 

  • Colan SD, Parness IA, Spevak PJ, Sanders SP (1992) Developmental modulation of myocardial mechanics: age and growth-related alterations in afterload and contractility. J Am Coll Cardiol 19:619–629

    Article  PubMed  CAS  Google Scholar 

  • Coppen SR, Kaba RA, Halliday D, Dupont E, Skepper JN, Elneil S, Severs NJ (2003) Comparison of connexin expression patterns in the developing mouse heart and human foetal heart. Mol Chem Biochem 242:121–127

    Article  CAS  Google Scholar 

  • Crabtree GR, Olson EN (2002) NFAT signaling: choreographing the social lives of cells. Cell 109:67–79

    Article  Google Scholar 

  • Cripps RM, Olson EN (2002) Control of cardiac development by an evolutionary conserved transcriptional network. Dev Biol 246:14–28

    Article  PubMed  CAS  Google Scholar 

  • Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, Orkin SH (2001) Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev 15:839–844

    Article  PubMed  CAS  Google Scholar 

  • Crone SA, Zhao YY, Fan L et al. (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nature Med 8:459–465

    Article  PubMed  CAS  Google Scholar 

  • De Paula-Brotto MA, Creazzo TL (1996) Ca transients in embryonic chicken heart: contributions from Ca channels and the sarcoplasmic reticulum. Am J Physiol 270:H518–H525

    Google Scholar 

  • Delorme B, Dahl E, Jarry-Guichard T, Briand JP, Willecke K, Gros D, Theveniau-Ruissy M (1997) Expression pattern of connexin gene products at the early developmental stages of the mouse cardiovascular system. Circ Res 81:423–437

    PubMed  CAS  Google Scholar 

  • Delot EC, Bahamonde ME, Zhao M, Lyons KM (2003) BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130:209–220

    Article  PubMed  CAS  Google Scholar 

  • Donavan J, Kordylewska A, Jan YN, Utset MF (2002) Tetralogy of Fallot and other congenital heart defects in Hey2 mutant mice. Curr Biol 12:1605–1610

    Article  Google Scholar 

  • Drake CJ (2003) Embryonic and adult vasculogenesis. Birth Defects Res 69:73–82

    Article  CAS  Google Scholar 

  • Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M (1997) The cardiac transcription factors Nkx2.5 und GATA-4 are mutual cofactors. EMBO J 16:5687–5696

    Article  PubMed  CAS  Google Scholar 

  • Elliott DA, Kirk EP, Yeoh T et al. (2003) Cardiac homeobox gene NKX2-5 mutations and congenital heart disease. J Am Coll Cardiol 41:2072–2076

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Ayusawa M, Minato M, Takada M, Takahashi S, Harada K (2001) Endogenous nitric oxide and endothelin-1 in persistent pulmonary hypertension of the newborn. Eur J Pediatr 160:217–222

    Article  PubMed  CAS  Google Scholar 

  • Fatkin D, Graham RM (2002) Molecular mechanisms of inherited cardiomyopathies. Physiol Rev 82:945–980

    PubMed  CAS  Google Scholar 

  • Feiner L, Webber AL, Brown CB et al. (2001) Targeted disruption of semaphoring 3C leads to persistent truncus arteriosus and aortic arch interruption. Development 128:3061–3070

    PubMed  CAS  Google Scholar 

  • Feng Q, Song W, Lu X, Hamilton JA, Lei M, Peng T, Yee SP (2002) Development of heart failure and congenital septal defects in mice lacking endothelial nitric oxide synthase. Circulation 106:873–879

    Article  PubMed  CAS  Google Scholar 

  • Fernandez E, Siddiquee Z, Shohet RV (2001) Apoptosis and proliferation in the neonatal murine heart. Dev Dyn 221:302–310

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Gessler M (2003) Hey genes in cardiovascular development. Trends Cardiovasc Med 13:221–226

    Article  PubMed  CAS  Google Scholar 

  • Franco D, Campione M (2003) The role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends in Cardiovasc Med 13:157–163

    Article  CAS  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, the ugly. Ann Rev Physiol 65:45–79

    Article  CAS  Google Scholar 

  • Gajewski K, Kim Y, Lee YM, Olson EN, Schulz RA (1997) D-Mef2: a target for tinman activation during drosophila heart development. EMBO J 16:515–522

    Article  PubMed  CAS  Google Scholar 

  • Gajewski K, Zhang Q, Choi CY et al. (2001) Pannier is a transcriptional target and partner of tinman during Drosophila cardiogenesis. Dev Biol 233:425–436

    Article  PubMed  CAS  Google Scholar 

  • Galvin KM, Donovan MJ, Lynch CA et al. (2000) A role of Smad 6 in development and homeostasis of the cardiovascular system. Nat Genet 24:171–174

    Article  PubMed  CAS  Google Scholar 

  • Garg V, Kathiriva IS, Barnes R et al. (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447

    Article  PubMed  CAS  Google Scholar 

  • Garofolo MC, Seidler FJ, Auman JT, Slotkin TA (2002) β-adrenergic modulation of muscarinic cholinergic receptor expression and function in developing heart. Am J Physiol Regulatory Integrative Comp Physiol 282:1356–1363

    Google Scholar 

  • Gebbia M, Ferrero GB, Pilia G et al. (1997) X-linked situs abnormalities result from mutations in ZIC3. Nat Genet 17:305–308

    Article  PubMed  CAS  Google Scholar 

  • Gessler M, Knobeloch KP, Heiisch A et al. (2002) Mouse gridlock: no aortic coarctation or deficiency, but fat cardiac defects in Hey2-/- mice. Curr Biol 12:1601–1614

    Article  PubMed  CAS  Google Scholar 

  • Goldmuntz E, Clark BJ, Mitchell LE et al. (1998) Frequency of 22q11 deletions in patients with conotruncal defects. J Am Coll Cardiol 32:492–498

    Article  PubMed  CAS  Google Scholar 

  • Goldmuntz E, Geiger E, Benson DW (2001) NKX2.5 mutations in patients with tetralogy of Fallot. Circulation 104:2565–2568

    Article  PubMed  CAS  Google Scholar 

  • Goldmuntz E, Bamford R, Karkera JD, de la Cruz J, Roessler E, Muenke M (2002) CFC1 mutations in patients with transposition of the great arteries and double-outlet right ventricle. Am J Hum Genet 70:776–780

    Article  PubMed  CAS  Google Scholar 

  • Gourdie RG, Harris BS, Bond J et al. (2003) Development of the cardiac pacemaking and conduction system. Birth Defects Res 69:46–57

    Article  CAS  Google Scholar 

  • Granzier HL, Labeit S (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease. Circ Res 94:284–295

    Article  PubMed  CAS  Google Scholar 

  • Gruber PJ, Epstein JA (2004) Development gone awry. Congenital heart disease. Circ Res 94:273–283

    Article  PubMed  CAS  Google Scholar 

  • Habets PE, Moorman AF, Christoffels VM (2003) Regulatory modules in the developing heart. Cardiovasc Res 58:246–263

    Article  PubMed  CAS  Google Scholar 

  • Haddock PS, Coetzee WA, Cho E et al. (1999) Subcellular [Ca2+] gradients during excitation-contraction coupling in newborn rabbit ventricular myocytes. Circ Res 85:415–427

    PubMed  CAS  Google Scholar 

  • Hamada H, Meno C, Watanabe D, Saijoh Y (2002) Establishment of vertebrate left-right asymmetry. Nat Rev Genet 3:103–113

    Article  PubMed  CAS  Google Scholar 

  • Harvey RP (1996) NK-2 homeobox genes and heart development. Dev Biol 178:203–216

    Article  PubMed  CAS  Google Scholar 

  • Harvey RP (2002) Patterning the vertebrate heart. Nat Rev Genet 3:544–556

    Article  PubMed  CAS  Google Scholar 

  • Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530:239–243

    Article  PubMed  CAS  Google Scholar 

  • Hofbeck M, Leipold G, Rauch A, Buheitel G, Singer H (1999) Clinical relevance of monosomy 22q11.2 in children with pulmonary atresia and ventricular septal defect. Eur J Pediatr 158:302–307

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann GF, von Kries R, Klose D et al. (2004) Frequencies of inherited organic acidurias and disorders of mitochondrial fatty acid transport and oxidation in Germany. Eur J Pediatr 163:76–80

    Article  PubMed  CAS  Google Scholar 

  • Holmgren D, Wahlander H, Eriksson BO, Oldfors A, Holme E, Tulinius M (2003) Cardiomyopathy in children with mitochondrial disease. Eur Heart J 24:280–288

    Article  PubMed  CAS  Google Scholar 

  • Hoshijima M, Chien KR (2002) Mixed signals in heart failure: cancer rules. J Clin Invest 109:849–855

    Article  PubMed  CAS  Google Scholar 

  • Hudlicka O, Brown MD (1996) Postnatal growth of the heart and its blood vessels. J Vase Res 33:266–287

    CAS  Google Scholar 

  • Hutchins G, Kessler-Hanna A, Moore G (1988) Development of the coronary arteries in the embryonic human heart. Circulation 77:1250–1257

    PubMed  CAS  Google Scholar 

  • Hutson MR, Kirby ML (2003) Neural crest and cardiovascular development: a 20-year perspective. Birth Defects Res 69:2–13

    Article  CAS  Google Scholar 

  • Iserin L, de Lonlay P, Viot G et al. (1998) Prevalence of the microdeletion 22q11 in newborn infants with congenital conotruncal cardiac anomalies. Eur J Pediatr 157:881–884

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata T, Nakazawa M, Pu WT, Tevosian SG, Izumo S (2003) Developmental changes in ventricular diastolic function correlate with changes in ventricular myoarchitecture in normal mouse embryos. Circ Res 93:857–865

    Article  PubMed  CAS  Google Scholar 

  • Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  PubMed  CAS  Google Scholar 

  • Kasahara H, Ueyama T, Wakimoto H et al. (2003) Nkx2.5 homeoprotein regulates expression of gap junction protein connexin 43 and sarcomere organization in postnatal cardiomyocytes. J Mol Cell Cardiol 35:243–256

    Article  PubMed  CAS  Google Scholar 

  • Katz AM (2003) Pathophysiology of heart failure: identifying targets for pharmacofherapy. Med Clin North Am 87:303–316

    Article  PubMed  CAS  Google Scholar 

  • Kaynak B, von Heydebreck A, Mebus S et al. (2003) Genome-wide array analysis of normal and malformed human hearts. Circulation 107:2467–2474

    Article  PubMed  Google Scholar 

  • Keller BB (1997 a) Embryonic cardiovascular function, coupling and maturation: a species view. In: Burggren WW, Keller BB (eds) Development of cardiovascular systems: molecules to organisms. Cambridge University Press, Cambridge, pp 65–87

    Google Scholar 

  • Keller BB, Yoshigi M, Tinney JP (1997 b) Ventricular-vascular uncoupling by acute conotruncal occlusion in the stage 21 chick embryo. Am J Physiol 273:2861–2866

    Google Scholar 

  • Kelly RG, Brown BA, Buckingham ME (2001) The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 1:435–440

    Article  PubMed  CAS  Google Scholar 

  • Kim RY, Robertson EJ, Solloway MJ (2001) Bmp6 and Bmp7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 235:449–466

    Article  PubMed  CAS  Google Scholar 

  • Kinugawa K, Minobe WA, Wood WM et al. (2001) Signaling pathways responsible for fetal gene induction in the failing human heart: evidence for altered thyroid hormone receptor gene expression. Circulation 103:1089–1094

    PubMed  CAS  Google Scholar 

  • Kirby ML (1999) Contribution of neural crest cells to heart and vessel morphology. In: Harvey RP, Rosenthal N (eds) Heart development. Academic Press, San Diego, pp 179–193

    Chapter  Google Scholar 

  • Kirby ML (2002) Molecular embryogenesis of the heart. Pediatr Dev Pathol 5:516–543

    Article  PubMed  Google Scholar 

  • Klein I, Ojamaa K (2001) Thyroid hormone and the cardiovascular system. N Engl J Med 344:501–509

    Article  PubMed  CAS  Google Scholar 

  • Kosaki R, Gebbia M, Kosaki K, Lewin M, Bowers P, Towbin JA, Casey B (1999 a) Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type IIB. Am J Med Genet 82:70–76

    Article  PubMed  CAS  Google Scholar 

  • Kosaki K, Bassi MT, Kosaki R, Lewin M, Belmont J, Schauer G, Casey B (1999 b) Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am J Hum Genet 64:712–721

    Article  PubMed  CAS  Google Scholar 

  • Kozlik-Feldmann R, Kramer HH, Wicht H, Feldmann R, Netz H, Reinhardt D (1993) Distribution of myocardial beta-adrenoceptor subtypes and coupling to the adenylate cyclase in children with congenital heart disease and implications for treatment. J Clin Pharmacol 33:588–595

    PubMed  CAS  Google Scholar 

  • Kreuder J, Bode S, Borkhardt A, Hagel KJ, Dapper F, Lampert F (1996) Molecular heterogeneity of major myocardial contractile proteins in children with congenital heart defects. Eur Heart J 17(Suppl l):40

    Google Scholar 

  • Kreuder J, Bertram U, Borkhardt A, Hagel KJ, Dapper F, Schranz D (1998) Myocardial troponin T and I gene expression in children with congenital heart defects. Eur Heart J 19(Suppl 1):241

    Google Scholar 

  • Kuo H, Chen J, Ruiz-Lozano P, Zou Y, Nemer M, Chien KR (1999) Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development 126:4223–4234

    PubMed  CAS  Google Scholar 

  • Kurihara Y, Kurihara H, Oda H, Maemura K, Nagai R, Ishikawa T, Yazaki Y (1995) Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 96:293–300

    Article  PubMed  CAS  Google Scholar 

  • Kwang SJ, Brugger SM, Lazik A et al. (2002) Msx2 is an immediate downstream effector of Pax3 in the development of the murine cardiac neural crest. Development 129:527–538

    PubMed  CAS  Google Scholar 

  • Laforgia N, Difonzo I, Altomare M, Mautone A (2001) Cord blood endothelin-1 and perinatal asphyxia. Acta Paediatr 90:351–352

    Article  PubMed  CAS  Google Scholar 

  • Lamers WH, Moorman AFM (2002) Cardiac septation: a late contribution of the embryonic primary myocardium to heart morphogenesis. Circ Res 91:93–103

    Article  PubMed  CAS  Google Scholar 

  • Lehman JJ, Kelly DP (2002) Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 29:339–345

    Article  PubMed  CAS  Google Scholar 

  • Lewin MB, Lindsay EA, Jurecic V, Goytia V, Towbin JA, Baldini A (1997) A genetic etiology for interruption of the aortic arch type B. Am J Cardiol 80:493–497

    Article  PubMed  CAS  Google Scholar 

  • Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407

    Article  PubMed  CAS  Google Scholar 

  • Linask KK (2003) Regulation of heart morphology: current molecular and cellular perspectives on the coordinated emergence of cardiac form and function. Birth Defects Res 69:14–24

    Article  CAS  Google Scholar 

  • Lips DJ, de Windt LJ, van Kraaij, DJ, Doevendans PA (2003) Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. Eur Heart J 24:883–896

    Article  PubMed  CAS  Google Scholar 

  • Lipshultz SE, Sleeper LA, Towbin JA et al. (2003) The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med 348:1647–1655

    Article  PubMed  Google Scholar 

  • Lohse MJ, Engelhardt S, Eschenhagen t (2003) What is the role of β-adrenergic signaling in heart failure? Circ Res 93:896–906

    Article  PubMed  CAS  Google Scholar 

  • Long WA, Henry WG, Llanos AJ (1998) Autonomie and central neuroregulation of fetal cardiovascular function. In: Polin RA, Fox WW (eds) Fetal and neonatal physiology, 2nd edn. Saunders, Philadelphia, pp 943–961

    Google Scholar 

  • Lopaschuk GD, Rebeyka IM, Allard MF (2002) Metabolic modulation: a means to mend a broken heart. Circulation 105:140–142

    PubMed  CAS  Google Scholar 

  • Lough J, Sugi Y (2000) Endoderm and heart development. Dev Dyn 217:327–342

    Article  PubMed  CAS  Google Scholar 

  • MacLennan DH, Kranias EG (2003) Phospholamban: a crucial regulator of cardiac contractility. Nat Rev Mol Biol 4:566–577

    Article  CAS  Google Scholar 

  • Mahle WT, Crisalli J, Coleman K, Campbell RM, Tarn VK, Vincent RN, Kanter KR (2003) Deletion of chromosome 22q11.2 and outcome in patients with pulmonary atresia and ventricular septal defect. Ann Thorac Surg 76:567–571

    Article  PubMed  Google Scholar 

  • Makinde AO, Kantor PF, Lopaschuk GD (1998) Maturation of fatty acid and carbohydrate metabolism in the newborn heart. Mol Cell Biochem 188:49–56

    Article  PubMed  CAS  Google Scholar 

  • Maltsev VA, Ji GJ, Wobus AM, Fleischmann BK, Hescheler J (1999) Establishment of β-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ Res 84:136–145

    PubMed  CAS  Google Scholar 

  • Mann D (2004) Heart failure. A companion to Braunwald’s heart disease. Saunders, Philadelphia

    Google Scholar 

  • Marvin MJ, Rocco G, Gardiner A, Bush SM, Lassar AB (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15:316–327

    Article  PubMed  CAS  Google Scholar 

  • Maurice DH, Palmer D, Tilley DG et al. (2003) Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system Mol Pharmacol 64:533–546

    Article  PubMed  CAS  Google Scholar 

  • McElhinney DB, Clark BJ 3rd, Weinberg PM et al. (2001) Association of chromosome 22q11 deletion with isolated anomalies of aortic arch laterality and branching. J Am Coll Cardiol 37:2114–2119

    Article  PubMed  CAS  Google Scholar 

  • McElhinney DB, Driscoll DA, Emanuel BS, Goldmuntz E. (2003 a) Chromosome 22q11 Deletion in patients with truneus arteriosus. Pediatr Cardiol 24:569–573

    Article  PubMed  CAS  Google Scholar 

  • McElhinney DB (2003 b) NKX2.5 mutations in patients with congenital heart disease. J Am Coll Cardiol 42:1650–1655

    Article  PubMed  CAS  Google Scholar 

  • McFadden DG, Olson EN (2002) Heart development: learning from mistakes. Curr Opin Genet Develop 12:328–335

    Article  CAS  Google Scholar 

  • McMurray J, Pfeffer MA (2002) New therapeutic options in congestive heart failure. Part I + II. Circulation 105:2099–2099 und 2223–2228

    Article  PubMed  Google Scholar 

  • Miller CE, Wong CL, Sedmera D (2003) Pressure overload alters stress-strain properties of the developing chicken heart. Am J Physiol Heart Circ Physiol 285:H1849–1856

    PubMed  CAS  Google Scholar 

  • Molenaar P, Bartel S, Cochrane A et al. (2000) Both beta(2)-and beta(l)-adrenergic receptors mediate hastened relaxation and phosphorylation of phospholamban and troponin I in ventricular myocardium of Fallot infants, consistent with selective coupling of beta(2)-adrenergic receptors to G(s)-protein. Circulation 102:1814–1821

    PubMed  CAS  Google Scholar 

  • Molkentin J, Lin Q, Duncan SA, Olson EN (1997) Requirement of the GATA4 transcription factor for heart tube formation and ventral morphogenesis. Genes Dev 11:1061–1072

    Article  PubMed  CAS  Google Scholar 

  • Moon RT, Bowermann B, Boutros M, Perrimon N (2002) The promise and perils of Wnt signaling through β-catenin. Science 296:1644–1646

    Article  PubMed  CAS  Google Scholar 

  • Moorman AF, Christoffels VM (2003) Cardiac chamber formation: development, genes and evolution. Physiol Rev 83:1223–1267

    PubMed  CAS  Google Scholar 

  • Morabito C, Dettman RW, Kattan J, Collier JM, Bristow J (2001) Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol 234:204–215

    Article  PubMed  CAS  Google Scholar 

  • Morabito CJ, Kattan J, Bristow J (2002) Mechanisms of embryonic coronary artery development. Curr Opin Cardiol 17:235–241

    Article  PubMed  Google Scholar 

  • Morishima M, Yanagisawa H, Yanagisawa M, Baldini A (2003) Ecel and Tbx1 define distinct pathways to aortic arch morphogenesis. Dev Dyn 228:95–104

    Article  PubMed  CAS  Google Scholar 

  • Murphy AM (1996) Contractile protein phenotypic variation during development. Cardiovasc Res 31:25–33

    Article  Google Scholar 

  • Muthuchamy M, Grupp IL, Grupp G et al. (1995) Molecular and physiological effects of overexpressing striated muscle β-tropomyosin in the adult murine heart. J Biol Chem 270:30593

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi T, Gu H, Seguchi M (1995) Developmental changes in contractile system of rabbit arterial smooth muscle. In: Clark EB, Markwald RR, Takao A (eds) Developmental mechanisms of heart disease. Futura, Armonk, pp 449–458

    Google Scholar 

  • Natarajan A, Yamagishi H, Ahmad F et al. (2001) Human eHAND, but not dHAND, is down-regulated in cardiomyopathies. J Mol Cell Cardiol 33:1607–1614

    Article  PubMed  CAS  Google Scholar 

  • Nemer G, Nemer M (2002) Cooperative interaction between GATA5 and NF-Atc regulates endothelial-endocardial differentiation of cardiogenic cells. Development 129:4045–4055

    PubMed  CAS  Google Scholar 

  • Nemer G, Nemer M (2003) Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and-6. Dev Biol 254:131–148

    Article  PubMed  CAS  Google Scholar 

  • Neumann J, Schmitz W, Scholz H, Meyerinck LV, Döring V, Kalma P (1988) Increase in myocardial Gi proteins in heart failure. Lancet 22:936–937

    Article  Google Scholar 

  • Niederreither K, Vermot J, Messaddeq N, Schuhbaur B, Chambon P, Dolle P (2001) Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development 128:1019–1031

    PubMed  CAS  Google Scholar 

  • Nugent AW, Daubeney PE, Chondros P et al; National Australian Childhood Cardiomyopafhy Study (2003) The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med 348:1639–1646

    Article  PubMed  Google Scholar 

  • O’Connell TD, Ishizaka S, Nakamura A et al. (2003) The alpha(1A/C)-and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 111:1783–1791

    Article  PubMed  CAS  Google Scholar 

  • Oettgen P (2001) Transcriptional regulation of vascular development. Circ Res 89:380–388

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Biol 4:552–565

    Article  CAS  Google Scholar 

  • Pandur P, Lasche M, Eisenberg LM, Kühl M (2002) Wnt-11 activation of a non-canonical Wnt signaling pathway is required for cardiogenesis. Nature 418:636–641

    Article  PubMed  CAS  Google Scholar 

  • Pavoine C, Behforouz N, Gauthier C et al. (2003) β 2-adrenergic signaling in human hearts: shift from the cyclic AMP to the arachidonic acid pathway. Mol Pharmacol 64:1117–1125

    Article  PubMed  CAS  Google Scholar 

  • Pavoine C, Magne S, Sauvadet A, Pecker F (1999) Evidence of a β 2/arachidonic acid pathway in ventricular cardiomyocytes. Regulation by the β-adrenergic/cAMP pathway. J Biol Chem 274:628–637

    Article  PubMed  CAS  Google Scholar 

  • Pedra SR, Smallhorn JF, Ryan G et al. (2002) Fetal cardiomyopathies. Pathogenic mechanisms, hemodynamic findings, and clinical outcome. Circulation 106:585–591

    Article  PubMed  Google Scholar 

  • Pennisi DJ, Rentschier S, Gourdie RG, Fishman GI, Mikawa T (2002) Induction and patterning of the cardiac conduction system. Int J Dev Biol 46:765–775

    PubMed  Google Scholar 

  • Pereira FA, Qui Y, Zhou G, Tsai MJ, Tsai SY (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 13:1037–1049

    Article  PubMed  CAS  Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium Channels. Physiol Rev 83:117–161

    PubMed  CAS  Google Scholar 

  • Phoon CK (2001) Circulatory physiology in the developing embryo. Curr Opin Pediatr 13:456–464

    Article  PubMed  CAS  Google Scholar 

  • Pignatelli RH, McMahon CJ, Dreyer WJ et al. (2003) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108:2672–2678

    Article  PubMed  Google Scholar 

  • Poller W, Fechner H, Kurreck J et al. (2004) Nucleic acid-based modulation of cardiac gene expression for the treatment of cardiac diseases. Approaches and perspectives. Z Kardiol 93:171–193

    Article  PubMed  CAS  Google Scholar 

  • Portbury AL, Chandra R, Groelle M et al. (2003) Catecholamines act via a beta-adrenergic receptor to maintain fetal heart rate and survival. Am J Physiol Heart Circ Physiol 284:H2069–2077

    PubMed  CAS  Google Scholar 

  • Porter AC, Svensson SP, Stamer WD, Bahl JJ, Richman JG, Regan JW (2003) Alpha-2 adrenergic receptors stimulate actin organization in developing fetal rat cardiac myocytes. Life Sci 72:1455–1466

    Article  PubMed  CAS  Google Scholar 

  • Porter GA, Makuck RF, Rivkees SA (2003) Intracellular Kalzium plays an essential role in cardiac development. Dev Dyn 227:280–290

    Article  PubMed  CAS  Google Scholar 

  • Portman MA (2002) The adenine nucleotide translocator: regulation and function during myocardial development and hypertrophy. Clin Exp Pharm Physiol 29:334–338

    Article  CAS  Google Scholar 

  • Potapova I, Plotnikov A, Lu Z et al. (2004) Human mesenchymal stem cells as a gene delivery system to create cardiac pacemakers. Circ Res 94:952–959

    Article  PubMed  CAS  Google Scholar 

  • Prall OW, Elliott DA, Harvey RP (2002) Developmental paradigms in heart disease: insights from tinman. Ann Med 34:148–156

    Article  PubMed  Google Scholar 

  • Qu YX, El-Sherif N, Boutjdir M (2000) Gene expression of Na/Ca exchanger during development of human fetal heart. Cardiovasc Res 45:866–873

    Article  PubMed  CAS  Google Scholar 

  • Qu YX, Boutjdir M (2001) Gene expression of SERCA2a and L-and T-type Ca Channels during human heart development. Pediatr Res 50:569–574

    Article  PubMed  CAS  Google Scholar 

  • Ranger AM, Grusby MJ, Hodge MR et al. (1998) The transcription factor Nf-Atc is essential for cardiac valve formation. Nature 392:186–190

    Article  PubMed  CAS  Google Scholar 

  • Reese DE, Mikawa T, Bader DM (2002) Development of the coronary vessel system. Circ Res 91:761–768

    Article  PubMed  CAS  Google Scholar 

  • Rentschier S, Zander J, Meyers K et al. (2002) Neuregulin-1 promotes formation of the murine cardiac conduetion system. Proc Natl Acad Sci USA 99:10464–10469

    Article  CAS  Google Scholar 

  • Rinaldo P, Matern D, Bennett MJ (2002) Fatty acid oxidation disorders. Annu Rev Physiol 64:477–502

    Article  PubMed  CAS  Google Scholar 

  • Robinson SW, Morris CD, Goldmuntz E, Reller MD, Jones MA, Steiner RD, Maslen CL (2003) Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects. Am J Hum Genet 72:1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Rongish BJ, Hinchman G, Doty MK, Baldwin HS, Tomanek RJ (1996) Relationship of the extracellular matrix to coronary neovascularization during development. J Mol Cell Cardiol 28:2203–2215

    Article  PubMed  CAS  Google Scholar 

  • Ross RD, Bollinger RO, Pinsky WW (1992) Grading the severity of congestive heart failure in infants. Pediatr Cardiol 13:72–75

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg F, Fisher SA, Watanabe M (2003) Sculpting the cardiac outflow tract. Birth Defects Res 69:38–45

    Article  CAS  Google Scholar 

  • Rudolph AM (2000) Myocardial growth before and after birth: clinical implications. Acta Paediatr 89:129–133

    Article  PubMed  CAS  Google Scholar 

  • Rybin VO, Pak E, Alcott S, Steinberg SF (2003) Developmental changes in β 2-adrenergic receptor signaling in ventricular myocytes: the role of Gi proteins and caveolae microdomains. Mol Pharmacol 63:1338–1348

    Article  PubMed  CAS  Google Scholar 

  • Saba Z, Nassar R, Ungeleider RM, Oakeley AE, Anderson PA (1996) Cardiac troponin T isoform expression correlates with pathophysiological descriptors in patients who underwent corrective surgery for congenital heart disease. Circulation 94:472–476

    PubMed  CAS  Google Scholar 

  • Samson F, Bonnet N, Heimburger M et al. (2000) Left ventricular alterations in a model of fetal left ventricular overload. Pediatr Res 48:43–49

    Article  PubMed  CAS  Google Scholar 

  • Sasse S, Brand NJ, Kyprianou P, Dhoot GK, Wade R, Arai M (1993) Troponin I gene expression during human cardiac development and in end-stage heart failure. Circ Res 72:932–928

    PubMed  CAS  Google Scholar 

  • Satoh N, Suter TM, Liao R, Colucci WS (2000) Chronic alpha-adrenergic receptor stimulation modulates the contractile phenotype of cardiac myocytes in vitro. Circulation 102:2249–2254

    PubMed  CAS  Google Scholar 

  • Schäfer K, Neuhaus P, Kruse J, Braun T (2003) The homeobox gene Lbx1 specifies a subpopulation of cardiac neural crest necessary for normal heart development. Circ Res 92:73–80

    Article  PubMed  Google Scholar 

  • Schranz D, Droege A, Broede A, Brodermann G, Schäfer E, Oelert H, Brodde OE (1993) Uncoupling of human cardiac β-adrenoceptors during cardiopulmonary bypass with cardioplegic cardiac arrest. Circulation 87:422–426

    PubMed  CAS  Google Scholar 

  • Schranz D (2002) Prinzipien der medikamentösen Therapie — Therapie der Herz-Kreislauf-Insuffizienz. In: Apitz J (Hrsg) Pädiatrische Kardiologie. Steinkopff, Darmstadt, S 685–696

    Google Scholar 

  • Schröder EA, Tobita T, Tinney JP, Foldes JK, Keller BB (2002) Microtubule involvement in the adaptation to altered mechanical load in developing chick myocardium. Circ Res 91:353–359

    Article  PubMed  Google Scholar 

  • Schroeder J, Jackson LF, Lee DC, Camenisch TD (2003) Form and function of developing heart valves: coordination by extracellular matrix and growth factor signaling. J Mol Med 81:392–403

    Article  PubMed  CAS  Google Scholar 

  • Schulz S, Le Moullec JM, Corvol P, Gase JM (1996) Early expression of all the components of the renin-angiotensinsystem in human development. Am J Pathol 149:2067–2079

    Google Scholar 

  • Schwartz ML, Cox GF, Lin AE, Korson MS, Perez-Atayde A, Lacro RV, Lipshultz SE (1996) Clinical approach to genetic cardiomyopathy in children. Circulation 94:2021–2038

    PubMed  CAS  Google Scholar 

  • Schwartz RJ, Olson EN (1999) Building the heart piece by piece: modularity of cis elements regulating Nkx2.5 transcription. Development 126:4187–4192

    PubMed  CAS  Google Scholar 

  • Sedmera D, Pexieder T, Vuillemin M, Thompson RP, Anderson RH (2000) Developmental patterning of the myocardium. Anat Rec 258:319–337

    Article  PubMed  CAS  Google Scholar 

  • Sedmera D, Thompson RP, Kolar F (2003) Effect of increased pressure loading on heart growth in neonatal rats. J Mol Cell Cardiol 35:301–309

    Article  PubMed  CAS  Google Scholar 

  • Seri I, Evans J (2001) Controversies in the diagnosis and management of hypotension in the newborn infant. Curr Opin Pediatr 13:116–123

    Article  PubMed  CAS  Google Scholar 

  • Shin CH, Liu ZP, Passier R et al. (2002) Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110:725–735

    Article  PubMed  CAS  Google Scholar 

  • Shiojima I, Yefremashvili M, Luo Z et al. (2002) Akt signaling mediates postnatal heart growth in response to insulin and nutritional Status. J Biol Chem 277:37670–37677

    Article  PubMed  CAS  Google Scholar 

  • Sjaastad I, Schiander I, Sjetnan A et al. (2003) Increased contribution of alpha 1-vs. beta-adrenoceptor-mediated inotropic response in rats with congestive heart failure. Acta Physiol Scand 177:449–458

    Article  PubMed  CAS  Google Scholar 

  • Slotkin TA, Auman JT, Seidler FJ (2003) Ontogenesis of beta-adrenoceptor signaling: implications for perinatal physiology and for fetal effects of tocolytic drugs. J Pharmacol Exp Ther 306:1–7

    Article  PubMed  CAS  Google Scholar 

  • Smith CJ, Huang R, Sun D et al. (1997) Development of decompensated dilated cardiomyopathy is associated with decreased gene expression and activity of the milrinonesensitive cAMP phosphodiesterase PDE3A. Circulation 96:3116–3123

    PubMed  CAS  Google Scholar 

  • Solloway MJ, Harvey RP (2003) Molecular pathways in myocardial development: a stem cell perspective. Cardiovasc Res 58:264–277

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D (1999) HAND proteins: molecular mediators of cardiac development and congenital heart disease. Trends Cardiovasc Med 9:11–18

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D, Olson EN (2000) A genetic blueprint for cardiac development. Nature 407:221–226

    Article  PubMed  CAS  Google Scholar 

  • Srivastava D, Gottlieb PD, Olson EN (2002) Molecular mechanisms of ventricular hypoplasia. Cold Spring Harbor symposia on Quantitative Biology 67: the cardiovascular system. Cold Spring Harbor Laboratory Press, USA, pp 121–126

    Google Scholar 

  • Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2:39–48

    Article  PubMed  CAS  Google Scholar 

  • Stalmans I, Lambrechts D, De Smet F et al. (2003) VEGF: a modifier of del22q11 (DiGeorge) syndrome? Nat Med 9:173–182

    Article  PubMed  CAS  Google Scholar 

  • Steinberg SF (1999) The molecular basis for distinct β-adrenergic receptor subtype actions in cardiomyocytes. Circ Res 85:1101–1111

    PubMed  CAS  Google Scholar 

  • Stennard FA, Costa MW, Elliott DA et al. (2003) Cardiac t-box factor Tbx20 directly interacts with Nkx2-5, GATA4 and GATA5 in regulation of gene expression in the developing heart. Dev Biol 262:206–224

    Article  PubMed  CAS  Google Scholar 

  • Stuckmann I, Evans S, Lassar AB (2003) Erythropoietin and retinoie acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev Biol 255:334–349

    Article  PubMed  CAS  Google Scholar 

  • Sun LS, Du F, Quaegebeur JM (1997) Right ventricular infundibular [beta]-adrenoreceptor complex in tetralogy of Fallot patients. Pediatr Res 42:12–16

    Article  PubMed  CAS  Google Scholar 

  • Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–249

    PubMed  CAS  Google Scholar 

  • Taber LA (2001) Biomechanics of cardiovascular development. Annu Rev Biomed Eng 3:1–25

    Article  PubMed  CAS  Google Scholar 

  • Tevosian SG, Deconinck AE, Tanaka M et al. (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101:729–739

    Article  PubMed  CAS  Google Scholar 

  • Thomas SA, Matsumoto AM, Palmiter RD (1995) Noradrenalin is essential for mouse fetal development. Nature 374:643–646

    Article  PubMed  CAS  Google Scholar 

  • Thomas T, Kurihara H, Yamagishi H, Kurihara Y, Yazaki Y, Olson EN, Srivastava D (1998) A signaling cascade involving endothelin-1, dHAND and msx1 regulates development of neural-crest-derived branchial arch mesenchyme. Development 125:3005–3014

    PubMed  CAS  Google Scholar 

  • Tibbits GF, Xu L, Sedarat F (2002) Ontogeny of excitation-contraction coupling in the mammalian heart. Comp Biochem Physiol A Mol Integr Physiol 132:691–698

    Article  PubMed  Google Scholar 

  • Tobita K, Keller BB (2000) Maturation of end-systolic stress-strain relations in chick embryonic myocardium. Am J Physiol Heart Circ Physiol 279:216–224

    Google Scholar 

  • Tobita K, Schröder EA, Tinney JP, Garrison JB, Keller BB (2002) Regional passive ventricular stress-strain relations during development of altered loads in chick embryo. Am J Physiol Heart Circ Physiol 282:H2386–2396

    PubMed  CAS  Google Scholar 

  • Toko H, Zhu W, Takimoto E et al. (2002) Csx/Nkx2-5 is required for homeostasis and survival of cardiac myocytes in the adult heart. J Biol Chem 277:24735–24743

    Article  PubMed  CAS  Google Scholar 

  • Towbin JA, Bowles NE (2002) The failing heart. Nature 415:227–233

    Article  PubMed  CAS  Google Scholar 

  • Tsuda T, Wang H, Timpl R, Chu ML (2001) Fibulin-2 expression marks transformed mesenchymal cells in developing cardiac valves, aortic arch vessels, and coronary vessels. Dev Dyn 222:89–100

    Article  PubMed  CAS  Google Scholar 

  • Tyagi S (1997) Vasculogenesis and angiogenesis: extracellular matrix remodeling in coronary collateral arteries and the ischemic heart. J Cell Biochem 65:388–394

    Article  PubMed  CAS  Google Scholar 

  • Urbanek K, Quaini F, Tasca G et al. (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA 100:10440–10445

    Article  PubMed  CAS  Google Scholar 

  • Wadhawan R, Tseng YT, Stabila J, McGonnigal B, Sarkar S, Padbury J (2003) Regulation of cardiac β1-receptor transcription during the developmental transition. Am J Physiol Heart Circ Physiol 284:H2146–2152

    PubMed  CAS  Google Scholar 

  • Waldo KL, Kuminski DH, Wallis KT, Stadt HA, Hutson MR, Platt DH, Kirby ML (2001) Conotruncal myocardium arises from a secondary heart field. Development 128:3179–3188

    PubMed  CAS  Google Scholar 

  • Walker JS, de Tombe PP (2004) Titin and the developing heart. Circ Res 94:860–862

    Article  PubMed  CAS  Google Scholar 

  • Wang DZ, Chang PS, Wang ZG et al. (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105:851–862

    Article  PubMed  CAS  Google Scholar 

  • Wehrens XH, Marks AR (2003) Altered function and regulation of cardiac ryanodine receptors in cardiac disease. Trends Biochem Sci 28:671–678

    Article  PubMed  CAS  Google Scholar 

  • Wetzel GT, Chen F, Klitzner TS (1995) Na/Ca exchange and cell contraction in isolated neonatal and adult rabbit cardiac myocytes. Am J Physiol 268:1723–1733

    Google Scholar 

  • Williams ML, Koch WJ (2004) Viral-based myocardial gene therapy approaches to alter cardiac function. Annu Rev Physiol 66:49–75

    Article  PubMed  CAS  Google Scholar 

  • Winnier GE, Kume T, Deng K et al. (1999) Roles of the winged helix transcription factors MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles. Dev Biol 213:418–431

    Article  PubMed  CAS  Google Scholar 

  • Xavier-Neto J, Rosenthal N, Silva FA, Matos TG, Hochgreb T, Linhares VL (2001) Retinoid signaling and cardiac anteroposterior segmentation. Genesis 31:97–104

    Article  PubMed  CAS  Google Scholar 

  • Ya J, Schilham MW, de Boer PA, Moorman AF, Clevers H, Lamers WH (1998) Sox-4 deficiency syndrome in mice is an animal model for common trunk. Circ Res 83:986–994

    PubMed  CAS  Google Scholar 

  • Yagi H, Furutani Y, Hamada H et al. (2003) Role of TBX1 in human del22q11.2 syndrome. Lancet 363:1363–1373

    Google Scholar 

  • Yamada S, Yamamura HI, Roeske WR (1980) Ontogeny of mammalian cardiac alphal adrenergic receptors. Eur J Pharmacol 68:217–221

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi H, Olson EN, Srivastava D (2000) The bHLH transcription factor, dHAND, is required for vascular development. J Clin Invest 105:261–270

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa H, Hammer RE, Richardson JA, Williams SC, Clouthier DE, Yanagisawa M (2000) Role of endothelin-1/endothelin-A receptor mediated signaling pathway in the aortic arch patterning in mice. J Clin Invest 102:22–33

    Article  Google Scholar 

  • Yanagisawa H, Clouthier DE, Richardson JA, Charité J, Olson EN (2003) Targeted deletion of a branchial arch-specific enhancer reveals a role of dHAND in craniofacial development. Development 130:1069–1078

    Article  PubMed  CAS  Google Scholar 

  • Yelon D, Feldman JL, Keegan BR (2002) Genetic regulation of cardiac patterning in zebrafish. In: Cold Spring Harbor Symposia on Quantitative Biology 67: the cardiovascular system. Cold Spring Harbor Laboratory Press, USA, pp 19–25

    Google Scholar 

  • Zaffran S, Frasch M (2002) Early signals in cardiac development. Circ Res 91:457–469

    Article  PubMed  CAS  Google Scholar 

  • Zamir EA, Srinivasan V, Perucchio R, Taber LA (2003) Mechanical asymmetry in the embryonic heart. Ann Biomed Eng 31:1327–1336

    Article  PubMed  Google Scholar 

  • Zhang J (2002) Myocardial energetics in cardiac hypertrophy. Clin Exp Pharmacol Physiol 29:351–359

    Article  PubMed  Google Scholar 

  • Zhao F, Weismann C, Satoda M, Pierpont ME, Sweeney E, Thompson EM, Gelb BD (2001) Novel TFAP2B mutations that cause Char syndrome provide a genotype-phenotype correlation. Am J Hum Genet 69:695–703

    Article  PubMed  CAS  Google Scholar 

  • Zhong TP, Childs S, Leu JP, Fishman MC (2001) Gridlock signaling pathway fashions the first embryonic artery. Nature 414:216–220

    Article  PubMed  CAS  Google Scholar 

  • Zosmer N, Bajoria R, Weiner E, Rigby M, Vaughan J, Fisk NM (1994) Clinical and echographic features of in utero cardiac dysfunction in the recipient twin in twin-twin transfusion syndrome. Br Heart J 72:74–79

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kreuder, J., Schranz, D. (2005). Molekulare Ursachen myokardialer Insuffizienz beim Neugeborenen. In: Ganten, D., Ruckpaul, K. (eds) Molekularmedizinische Grundlagen von fetalen und neonatalen Erkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26524-4_20

Download citation

Publish with us

Policies and ethics