Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 1110 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5.2.7 Literatur

  • Anderson DC, Hughes BJ, Smith CW (1981) Abnormal mobility of neonatal polymorphonuclear leukocytes. J Clin Invest 68:863–874

    Article  PubMed  CAS  Google Scholar 

  • Anderson DC, Rothlein R, Marlin SD et al (1990) Impaired transendothelial migration by neonatal neutrophils: abnormalities of Mac-1 (CDllb/CD18)-dependent adherence reactions. Blood 76:2613–2621

    PubMed  CAS  Google Scholar 

  • Anderson DC, Abbassi O, Kishimoto TK et al (1991) Diminished lection, epidermal growth factor, complement binding domain-cell adhesion molecule-1 on neonatal neutrophils underlies their impaired CD18-independent adhesion to endothelial cells in vitro. J Immunol 146:3372–3379

    PubMed  CAS  Google Scholar 

  • Bailie KE, Irvine AE, Bridges JM, McClure BG (1994) Granulocyte and granulocyte-macrophage colony-stimulating factors in cord and maternal serum at delivery. Pediatr Res 35:164–168

    Article  PubMed  CAS  Google Scholar 

  • Baker CJ, Kasper DL (1976) Correlation of maternal antibody deficiency with susceptibility to neonatal group B streptococcal infection. N Engl J Med 294:753–756

    Article  PubMed  CAS  Google Scholar 

  • Baley JE, Stork EK, Warkentin PI, Shurin SB (1988) Neonatal neutropenia. Clinical manifestations, cause, and outcome. Am J Dis Child 142:1161–1166

    PubMed  CAS  Google Scholar 

  • Baltimore RS, Huie SM, Meek JI et al (2001) Early-onset neonatal sepsis in the era of group B streptococcal prevention. Pediatrics 108:1094–1098

    Article  PubMed  CAS  Google Scholar 

  • Barak Y, Leibovitz E, Mogilner B et al (1997) The in vivo effect of recombinant human granulocyte colony-stimulating factor in neutropenic neonates with sepsis. Eur J Pediatr 156:643–646

    Article  PubMed  CAS  Google Scholar 

  • Bauer K, Zemlin M, Hummel M et al (2002) Diversification of Ig heavy chain genes in human preterm neonates prematurely exposed to environmental antigens. J Immunol 169:1349–1356

    PubMed  CAS  Google Scholar 

  • Berner R (2002) Group B streptococci in pregnancy and infancy. Curr Opin Infect Dis 15:307–313

    PubMed  Google Scholar 

  • Berner R, Niemeyer CM, Leititis JU et al (1998) Plasma levels and gene-expression of G-CSF, TNF-α, IL-1β, IL-6, IL-8, and sICAM-1 in neonatal early-onset sepsis. Pediatr Res 44:469–477

    Article  PubMed  CAS  Google Scholar 

  • Berner R, Tüxen B, Clad A, Forster J, Brandis M (2000) Elevated gene-expression of interleukin-8 in cord blood is a sensitive marker of neonatal infection. Eur J Pediatr 159:205–210

    Article  PubMed  CAS  Google Scholar 

  • Berner R, Csorba J, Brandis M (2001) Different cytokine expression in cordblood mononuclear cells (CBMNC) after Stimulation with neonatal sepsis or colonizing strains of Streptococcus agalactiae. Pediatr Res 49:691–697

    Article  PubMed  CAS  Google Scholar 

  • Berner R, Welter P, Brandis M (2002a) Cytokine expression of cord and adult blood mononuclear cells in response to Streptococcus agalactiae. Pediatr Res 51:304–309

    Article  PubMed  CAS  Google Scholar 

  • Berner R, Fuerll B, Stelter F, Droese J, Mueller HP, Schuett C (2002 b) Elevated plasma levels of lipopolysaccharide binding protein (LBP) and soluble CD14 in neonatal early onset sepsis. Clin Diagn Lab Immunol 9:440–445

    Article  PubMed  CAS  Google Scholar 

  • Billiau A (1998) Gamma-interferon: the match that lights the fire? Immunology Today 9:37–40

    Article  Google Scholar 

  • Bohnsack JF, Takahashi S, Hammitt L, Miller DV, Aly AA, Adderson EE (2000) Genetic polymorphisms of group B streptococcus scpB alter functional activity of a cell-associated peptidase that inactivates C5a. Infect Immun 68:5018–5025

    Article  PubMed  CAS  Google Scholar 

  • Bouchon A, Facchetti F, Weigand MA, Colonna M (2001) TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410:1103–1107

    Article  PubMed  CAS  Google Scholar 

  • Bührer C, Graulich J, Stibenz D, Dudenhausen JW, Obladen M (1994) L-Selectin is down-regulated in umbilical cord blood granulocytes and monocytes of newborn infants with acute bacterial infection. Pediatr Res 36:799–804

    Article  PubMed  Google Scholar 

  • Cairo MS (1989) Neonatal neutrophil host defense. Am J Dis Child 143:40–56

    PubMed  CAS  Google Scholar 

  • Cairo MS (1991) Cytokines: a new immunotherapy. Clin Perinatol 18:343–359

    PubMed  CAS  Google Scholar 

  • Cairo MS, Plunkett J, Mauss D, van de Ven C (1990) Seven-day administration of recombinant granulocyte colony-stimulating factor to newborn rats: modulation of neonatal neutrophilia, myelopoiesis, and group B streptococcal sepsis. Blood 76:1788–1794

    PubMed  CAS  Google Scholar 

  • Carr R, Modi N, Doré CJ, El-Rifai R, Lindo D (1999) A randomized, controlled trial of prophylactic granulocyte-macrophage colony-stimulating factor in human newborns less than 32 weeks gestation. Pediatrics 103:796–802

    Article  PubMed  CAS  Google Scholar 

  • Carroll MC (1998) The role of complement and complement receptors in induction and regulation of immunity. Annu Rev Immunol 16:545–568

    Article  PubMed  CAS  Google Scholar 

  • Cederqvist LL, Ewool LC, Litwin SD (1978) The effect of fetal age, birth weight, and sex on cord blood immunoglobulin values. Am J Obstet Gynecol 131:520–525

    PubMed  CAS  Google Scholar 

  • Chalmers IM, Janossy G, Contreras M, Navarrete C (1998) Intracellular cytokine profile of cord and adult blood lymphocytes. Blood 92:11–18

    PubMed  CAS  Google Scholar 

  • Cheng Q, Carlson B, Pillai S et al (2001) Antibody against surface-bound C5a peptidase is opsonic and initiates macrophage killing of group B streptococci. Infect Immun 69:2302–2308

    Article  PubMed  CAS  Google Scholar 

  • Christensen RD, Rothstein G (1980) Exhaustion of mature marrow neutrophils in neonates with sepsis. J Pediatr 96:316–318

    Article  PubMed  CAS  Google Scholar 

  • Christensen RD, Rothstein G (1984) Pre and postnatal development of granulocyte stem cells (CFUc) in the rat. Pediatr Res 18:599–602

    Article  PubMed  CAS  Google Scholar 

  • Christensen RD, MacFarlane JL, Taylor NL et al (1982) Blood and marrow neutrophils during experimental group B streptococcal infection: quantification of the stem cell, proliferative, storage and circulating pools. Pediatr Res 16:549–553

    PubMed  CAS  Google Scholar 

  • Christensen RD, Harper TE, Rothstein G (1986) Granulocyte-macrophage progenitor cells in term and preterm neonates. J Pediatr 109:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Cuzzola M, Mancuso G, Beninati C et al (2000a) Human monocyte receptors involved in tumor necrosis factor responses to group B streptococcal products. Infect Immun 68:994–998

    Article  PubMed  CAS  Google Scholar 

  • Cuzzola M, Mancuso G, Beninati C et al (2000b) β2 integrins are involved in cytokine responses to whole grampositive bacteria. J Immunol 164:5871–5876

    PubMed  CAS  Google Scholar 

  • Davies HD, Adair C, McGeer A et al (2001) Antibodies to capsular polysaccharides of group B streptococcus in pregnant Canadian women: relationship to colonization Status and infection in the neonate. J Infect Dis 184:285–291

    Article  PubMed  CAS  Google Scholar 

  • Davies NP, Buggins AG, Snijders RJ, Jenkins E, Layton DM, Nicolaides KH (1992) Blood leucocyte count in the human fetus. Arch Dis Child 399–403

    Google Scholar 

  • Dinauer MC (1998) The phagocyte system and disorders of granulopoiesis and granulocyte function. In: Nathan DG, Orkin SH (eds) Hematology of infancy and childhood, 5th edn. Saunders, Philadelphia, pp 889–967

    Google Scholar 

  • Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA (1994) The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci USA 91:1863–1867

    Article  PubMed  CAS  Google Scholar 

  • Feikin DR, Thorsan P, Zywicki S et al (2001) Association between colonization with group B streptococci during pregnancy and preterm delivery among Danish women. Am J Obstet Gynecol 184:427–433

    Article  PubMed  CAS  Google Scholar 

  • Flo TH, Haiaas O, Lien E et al (2000) Human Toll-like receptor 2 mediates monocyte activation by Listeria monocytogenes, but not by group B streptococci or lipopolysaccharide. J Immunol 164:2046–2049

    Google Scholar 

  • Forsthuber T, Yip HC, Lehmann PV (1996) Induction of Th1 and Th2 immunity in neonatal mice. Science 271:1728–1730

    Article  PubMed  CAS  Google Scholar 

  • Funke A, Berner R, Traichel B, Schmeisser D, Leititis JU, Niemeyer CM (2000) Frequency, natural course and outcome of neonatal neutropenia. Pediatrics 106:45–51

    Article  PubMed  CAS  Google Scholar 

  • Furth van R, Raeburn JA, Van Zwet TL (1979) Characteristics of human mononuclear phagocytes. Blood 54:485–500

    PubMed  Google Scholar 

  • Ganz T, Lehrer RI (1999) Antibiotic peptides from higher eukaryotes: biology and applications. Mol Med Today 5:292–297

    Article  PubMed  CAS  Google Scholar 

  • Gessler P, Kirchmann N, Kientsch-Engel R, Haas N, Lasch P, Kachel W (1993) Serum concentrations of granulocyte colony-stimulating factor in healthy term and preterm neonates and in those with various diseases including bacterial infections. Blood 82:3177–3182

    PubMed  CAS  Google Scholar 

  • Gillian ER, Christensen RD, Suen Y, Ellis R, van de Ven C, Cairo SC (1994) A randomized, placebo-controlled trial of recombinant human granulocyte colony-stimulating factor administration in newborn infants with presumed sepsis: significant induction of peripheral and bone marrow neutrophilia. Blood 84:1427–1433

    Google Scholar 

  • Girschick HJ, Lipsky PE (2002) The kappa gene repertoire of human neonatal B cells. Mol Immunol 38:1113–1127

    Article  PubMed  CAS  Google Scholar 

  • Gladstone IM, Ehrenkranz RA, Edberg SC, Baltimore RS (1990) A ten-year review of neonatal sepsis and comparison with the previous fifty-year experience. Pediatr Infect Dis J 9:819–825

    Article  PubMed  CAS  Google Scholar 

  • Glaser P, Rusniok C, Buchrieser C et al (2002) Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 45:1499–1513

    Article  PubMed  CAS  Google Scholar 

  • Gomez R, Ghezzi F, Romero R, Munoz H, Tolosa JE, Rojas I (1995) Premature labor and intra-amniotic infection: clinical aspects and the role of cytokines in diagnosis an pathophysiology. Clin Perinatol 22:281–342

    PubMed  CAS  Google Scholar 

  • Griffioen AW, Toebes EA, Zegers BJ, Rijkers GT (1992) Role of CR2 in the human adult and neonatal in vitro antibody response to type 4 pneumococcal polysaccharide. Cell Immunol 143:11–22

    Article  PubMed  CAS  Google Scholar 

  • Heine RP, Wiesenfeld H, Mortimer L, Greig PC (1998) Amniotic fluid defensins: potential marker of subclinical intrauterine infection. Clin Infect Dis 27:513–518

    Article  PubMed  CAS  Google Scholar 

  • Henneke P, Takeuchi O, van Strijp JA et al (2001) Novel engagement of CD14 and multiple Toll-like receptors by group B streptococci. J Immunol 167:7069–7076

    PubMed  CAS  Google Scholar 

  • Henneke P, Takeuchi O, Malley R et al (2002) Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J Immunol 169:3970–3977

    PubMed  CAS  Google Scholar 

  • Jones HD, Schmalstieg FC, Dempsey K et al (1990) Subcellular distribution and mobilization of Mac-1 (CD llb/CD18) in neonatal neutrophils. Blood 75:488–498

    PubMed  CAS  Google Scholar 

  • Karlsson H, Hessle C, Rudin A (2002) Innate immune responses of human neonatal cells to bacteria from the normal gastrointestinal flora. Infect Immun 70:6688–6696

    Article  PubMed  CAS  Google Scholar 

  • Kasper DL, Paoletti LC, Wessels MR et al (1996) Immune response to type III group B streptococcal polysaccharidetetanus toxoid conjugate vaccine. J Clin Invest 98:2308–2314

    Article  PubMed  CAS  Google Scholar 

  • Kohler PF (1973) Maturation of the human complement system. I. Onset time and sites of fetal C1q, C4, C3, and C5 synthesis. J Clin Invest 52:671–673

    Article  PubMed  CAS  Google Scholar 

  • Kwak DJ, Augustine NH, Borges WG, Joyner JL, Green WF, Hill HR (2000) Intracellular and extracellular cytokine production by human mixed mononuclear cells in response to group B streptococci. Infect Immun 68:320–327

    Article  PubMed  CAS  Google Scholar 

  • Landmann R, Knopf HP, Link S, Sansano S, Schumann R, Zimmerli W (1996) Human monocyte CD14 is upregulated by lipopolysaccharid. Infect Immun 64:1762–1769

    PubMed  CAS  Google Scholar 

  • Levy O (2002) Impaired innate immunity at birth: deficiencies of bactericidal/permeability-increasing protein (BPI) in the neutrophils of newborns. Pediatr Res 51:667–669

    Article  PubMed  Google Scholar 

  • Levy O, Martin S, Eichenwald E et al (1999) Impaired innate immunity in the newborn: newborn neutrophils are deficient in bactericidal/permeability-increasing protein (BPI). Pediatrics 104:1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Lewis DB, Wilson CB (1995) Developmental immunology and role of host defenses in neonatal susceptibility to infection. In: Remington JS, Klein JO (eds) Infectious diseases of the fetus and newborn infant, 4th edn. Saunders, Philadelphia, p 20

    Google Scholar 

  • Lien E, Ingalls RR (2002) Toll-like receptors. Crit Care Med 30 (Suppl):1–11

    Article  Google Scholar 

  • Lin FY, Phillips JB III, Azimi PH et al (2001) Level of maternal antibody required to protect neonates against early-onset disease caused by group B streptococcus type Ia: a multicenter, seroepidemiology study. J Infect Dis 184: 1022–1028

    Article  PubMed  CAS  Google Scholar 

  • Locatelli F, Rocha V, Chastang C et al (1999) Factors associated with outcome after cord blood transplantation in children with acute leukemia. Eurocord-Cord Blood Transplant Group. Blood 93:3662–3671

    PubMed  CAS  Google Scholar 

  • Manroe BL, Weinberg AG, Rosenfeld CR, Browne R (1979) The neonatal blood count in health and disease. I. Reference values for neutrophilic cells. J Pediatr 95:89–98

    Article  PubMed  CAS  Google Scholar 

  • Marshall-Clarke S, Reen D, Tasker L, Hassan J (2000) Neonatal immunity: how well has it grown up? Immunol Today 21

    Google Scholar 

  • Medvedev AE, Flo T, Ingalls RR, Golenbock DT, Teti G, Vogel SN, Espevik T (1998) Involvement of CD14 and complement receptors CR3 and CR4 in nuclear factor-B activation and TNF production induced by lipopolysaccharide and group B streptococcal cell walls. J Immunol 160:4535–4542

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway C (2000) Innate immunity. N Engl J Med 343:338–344

    Article  PubMed  CAS  Google Scholar 

  • Mehr S, Doyle KW (2000) Cytokines as markers of bacterial sepsis in newborn infants: a review. Pediatr Infect Dis J 19:879–887

    Article  PubMed  CAS  Google Scholar 

  • Mouzinho A, Rosenfeld CR, Sanchez PJ, Risser R (1994) Revised reference ranges for circulating neutrophils in very-low-birth-weight neonates. Pediatrics 94:76–82

    PubMed  CAS  Google Scholar 

  • Nupponen I, Turunen R, Nevalainen T, Peuravuori H, Pohjavuori M, Repo H, Andersson S (2002) Extracellular release of bactericidal/permeability-increasing protein in newborn infants. Pediatr Res 51:670–674

    Article  PubMed  CAS  Google Scholar 

  • Opal SM, Scannon PJ, Vincent JL et al (1999) Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. J Infect Dis 180:1584–1589

    Article  PubMed  CAS  Google Scholar 

  • Paoletti LC, Rench MA, Kasper DL et al (2001) Effects of alum adjuvant or a booster dose on immunogenicity during clinical trials of group B streptococcal type III conjugate vaccine. Infect Immun 69:6696–6701

    Article  PubMed  CAS  Google Scholar 

  • Pedraz C, Lorente F, Pedraz MJ, Salazar Villalobos V (1980) Development of the serum levels of complement during the first year of life. An Esp Pediatr 13:571–576

    PubMed  CAS  Google Scholar 

  • Qian JX, Lee SM, Suen Y, Knoppel E, van de Ven C, Cairo MS (1997) Decreased interleukin-15 from activated cord versus adult peripheral blood mononuclear cells and the effect of interleukin-15 in upregulating antitumor immune activity and cytokine production in cord blood. Blood 90:3106–3117

    PubMed  CAS  Google Scholar 

  • Ridge JP, Fuchs EJ, Matzinger P (1996) Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 271:1723–1726

    Article  PubMed  CAS  Google Scholar 

  • Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478

    Article  PubMed  CAS  Google Scholar 

  • Sáez-Llorens X, McCracken GH Jr (1993) Sepsis syndrome and septic shock in pediatrics: current concepts of terminology, pathophysiology, and management. J Pediatr 123:497–508

    Article  PubMed  Google Scholar 

  • Schaller-Bals S, Schulze A, Bals R (2002) Increased levels of antimicrobial peptides in tracheal aspirates of newborn infants during infection. Am J Respir Crit Care Med 165:992–995

    PubMed  Google Scholar 

  • Schibier KR, Liechty KW, White WL, Rothstein G, Christensen RD (1992) Defective production of interleukin-6 by monocytes: a possible mechanism underlying several host deficiencies of neonates. Pediatr Res 31:18–21

    Google Scholar 

  • Schibier KR, Osborne KA, Leung LY, Le TV, Baker SI, Thompson DD (1998) A randomized, placebo-controlled trial of granulocyte colony-stimulating factor administration to newborn infants with neutropenia and clinical signs of early-onset sepsis. Pediatrics 102:6–13

    Article  Google Scholar 

  • Schlievert PM, Gocke JE, Deringer JR (1993) Group B streptococcal toxic shock-like syndrome: report of a case and purification of an associated pyrogenic toxin. Clin Infect Dis 17:26–31

    PubMed  CAS  Google Scholar 

  • Schrag SJ, Zywicki S, Farley MM et al (2000) Group B streptococcal disease in the era of intrapartum prophylaxis. N Engl J Med 342:15–20

    Article  PubMed  CAS  Google Scholar 

  • Schuchat A (2001) Group B streptococcal disease: from trials and tribulations to triumph and trepidation. Clin Infect Dis 33:751–756

    Article  PubMed  CAS  Google Scholar 

  • Schuchat A, Zywicki SS, Dinsmoor MJ et al (2002) Risk factors and opportunities for prevention of early-onset neonatal sepsis: a multicenter case-control study. Pediatrics 105:21–26

    Article  Google Scholar 

  • Schuit KE, Homisch L (1984) Inefficient in vivo neutrophil migration in neonatal rats. J Leukoc Biol 35:583–586

    PubMed  CAS  Google Scholar 

  • Schultz C, Rott C, Richter N, Bucsky P, Reiss I, Gortner L (1999) Intracytoplasmic detection of cytokines in neonatal lymphocytes and monocytes by flow cytometry. Blood 93:3566–3567

    PubMed  CAS  Google Scholar 

  • Schultz C, Rott C, Temming P, Schlenke P, Moller JC, Bucsky P (2002) Enhanced interleukin-6 and interleukin-8 synthesis in term and preterm infants. Pediatr Res 51:317–322

    Article  PubMed  CAS  Google Scholar 

  • Scott ME, Kubin M, Kohl S (1997) High level interleukin-12 production, but diminished interferon-γ production, by cord blood mononuclear cells. Pediatr Res 41:547–553

    Article  PubMed  CAS  Google Scholar 

  • Shalak LF, Laptook AR, Jafri HS, Ramilo O, Perlman JM (2002) Clinical chorioamnionitis, elevated cytokines, and brain injury in term infants. Pediatrics 110:673–680

    Article  PubMed  Google Scholar 

  • Singh B, Merchant P, Walker CR, Kryworuchko M, Diaz-Mitoma F (1996) Interleukin-6 expression in cord blood of patients with clinical chorioamnionitis. Pediatr Res 39:976–979

    Article  PubMed  CAS  Google Scholar 

  • Slattery MM, Morrison JJ (2002) Preterm delivery. Lancet 360:1489–1497

    Article  PubMed  Google Scholar 

  • Smith JB, Campbell DE, Ludomirsky A et al (1990) Expression of the complement receptors CR1 and CR3 ant the type III Fcγ receptor on neutrophils from newborn infants and from fetuses with Rh disease. Pediatr Res 28:120–126

    Article  PubMed  CAS  Google Scholar 

  • Sprenger H, Gemsa D (1999) Angeborene Mechanismen der Infektabwehr. In: Ganten D, Ruckpaul K (Hrsg) Immunsystem und Infektiologie. Handbuch der molekularen Medizin, Bd 4. Springer, Berlin Heidelberg New York Tokio, S 317–340

    Google Scholar 

  • Stiehm ER, Fudenberg HH (1966) Serum levels of immune globulins in health and disease: a survey. Pediatrics 37:715–717

    PubMed  CAS  Google Scholar 

  • Thomas CA, Li Y, Kodama T, Suzuki H, Silverstein SC, El Khoury J (2000) Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 191:147–156

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Mukaida N, Harada A et al (1999) Allevation of lipopolysaccharide-induced acute liver injury in Propioni-bacterium acnes-primed IFN-γ-deficient mice by a concomitant reduction of TNF-α, IL-12, and IL-18 production. J Immunol 162:1049–1055

    PubMed  CAS  Google Scholar 

  • Vallejo JG, Knuefermann P, Mann DL, Sivasbramanian (2000) Group B streptococcus induces TNF-α gene expression and activation of the transcription factors NF-κB and activator protein-1 in human cord blood monocytes. J Immunol 165:419–425

    PubMed  CAS  Google Scholar 

  • Vasselon T, Detmers PA (2002) Toll-receptors: a central element in innate immune responses. Infect Immun 70:1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Vreugdenhil AC, Dentener MA, Snoek AM, Greve JW, Buurman WA (1999) Lipopolysaccharide binding protein and serum amyloid a secretion by human intestinal epithelial cells during the acute phase response. J Immunol 163:2792–2798

    PubMed  CAS  Google Scholar 

  • Washington State Vital Statistics 2000 (2002) Center for Health Statistics, Olympia, Washington

    Google Scholar 

  • Weatherstone K, Rieh E (1989) Tumor necrosis factor/cachectin and interleukin-1 secretion by cord blood monocytes from premature and term neonates. Pediatr Res 25:342–346

    Article  PubMed  CAS  Google Scholar 

  • Wheeler AP, Bernard GR (1999) Treating patients with severe sepsis. N Engl J Med 3:207–214

    Article  Google Scholar 

  • Williams PA, Bohnsack JF, Augustine NH, Drummond WK, Rubens CE, Hill HR (1993) Production of tumor necrosis factor by human cells in vitro and in vivo, induced by group B streptococci. J Pediatr 123:292–300

    Article  PubMed  CAS  Google Scholar 

  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharides (LPS) and LPS binding protein. Science 249:1431–1433

    Article  PubMed  CAS  Google Scholar 

  • Yachie A, Takano N, Ohta K, Uehara T, Fujita S, Miyawaki T, Taniguchi N (1992) Defective production of IL-6 in very small premature infants in response to bacterial pathogens. Infect Immun 60:749–753

    PubMed  CAS  Google Scholar 

  • Zemlin M, Bauer K, Hummel M et al (2001) The diversity of rearranged immunoglobulin heavy chain variable region genes in peripheral blood B cells of preterm infants is restricted by short third complementarity-determining regions but not by limited gene segment usage. Blood 97:1511–1513

    Article  PubMed  CAS  Google Scholar 

  • Zilow EP, Brüssau J, Linderkamp O, Zilow G (1995) In vitro activation of classical and alternative pathway of the complement system. Pediatr Res 38:462

    Google Scholar 

  • Zilow G, Zilow EP, Burger R, Linderkamp O (1993) Complement activation in newborn infants with early onset infection. Pediatr Res 34:199–203

    Article  PubMed  CAS  Google Scholar 

  • Zilow G, Brüssau J, Hauck W, Zilow EP (1994) Complement factor 9 deficiency in term and preterm neonates. Immunobiology 191:306

    Google Scholar 

  • Zweigner J, Gramm HJ, Singer OC, Wegscheider K, Schumann RR (2001) High concentrations of lipopolysaccharid-binding protein in serum of patients with severe sepsis or septic shock inhibit the lipopolysaccharide response of human monocytes. Blood 98:3800–3808

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berner, R. (2005). Molekulare Mechanismen der neonatalen Abwehr von bakteriellen Infektionen. In: Ganten, D., Ruckpaul, K. (eds) Molekularmedizinische Grundlagen von fetalen und neonatalen Erkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26524-4_18

Download citation

Publish with us

Policies and ethics