Skip to main content

Molekulare Mechanismen von Fehlbildungen, Wachstums-, Differenzierungs- und Entwicklungsstörungen des Zentralnervensystems

  • Chapter
Molekularmedizinische Grundlagen von fetalen und neonatalen Erkrankungen

Part of the book series: Molekulare Medizin ((MOLMED))

  • 1118 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.1.5 Literatur

  • Ang S, Rossant J (1994) HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78:561–574

    Article  PubMed  CAS  Google Scholar 

  • Ang S-L, Jin O, Rhinn M, Daigle N, Stevensen L, Rossant J (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 121:243–252

    Google Scholar 

  • Auerbach R (1954) Analysis of the developmental effects of a lethal mutation in the house mouse. J Exp Zool 127:305–329

    Article  Google Scholar 

  • Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM (2000) The organizer factors chordin and noggin are required for mouse forebrain development. Nature 403:658–661

    Article  PubMed  CAS  Google Scholar 

  • Barkovich AJ, Koch TK, Carrol CL (1991) The spectrum of lissencephaly: report of ten patients analyzed by magnetic resonance imaging. Ann Neurol 30:139–146

    Article  PubMed  CAS  Google Scholar 

  • Beddington RS (1994) Induction of a second neural axis by the mouse node. Development 120:613–620

    PubMed  CAS  Google Scholar 

  • Beddington RS, Robertson EJ (1999) Axis development and early asymmetry in mammals. Cell 96:195–209

    Article  PubMed  CAS  Google Scholar 

  • Bishop KM, Goudreau G, O’Leary DD (2000) Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. Science 288:344–349

    Article  PubMed  CAS  Google Scholar 

  • Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601

    Article  PubMed  CAS  Google Scholar 

  • Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:965–969

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J, Ericson J (2001) Specification of neuronal fates in the ventral neural tube. Curr Opin Neurobiol 11:43–49

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  PubMed  CAS  Google Scholar 

  • Brunelli S, Faiella A, Capra V, Nigro V, Simeone A (1996) Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nat Genet 12:94–96

    Article  PubMed  CAS  Google Scholar 

  • Bulchand S, Grove EA, Porter FD, Tole S (2001) LIM-homeodomain gene Lhx2 regulates the formation of the cortical hem. Mech Dev 100:165–175

    Article  PubMed  CAS  Google Scholar 

  • Bulfone A, Smiga SM, Shimamura K, Peterson A, Puelles L, Rubenstein JL (1995) T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15:63–78

    Article  PubMed  CAS  Google Scholar 

  • Cahana A, Escamez T, Nowakowski RS, Hayes NL, Giacobini M (2001) Targeted mutagenesis of Lis1 disrupts cortical development and LIS1 homodimerization. Proc Natl Acad Sci U S A 98:6429–6434

    Article  PubMed  CAS  Google Scholar 

  • Capra V, De Marco P, Moroni A, Faiella A, Brunelli S (1996) Schizencephaly: surgical features and new molecular genetic results. Eur J Pediatr Surg 6Suppl 1:27–29

    Article  PubMed  Google Scholar 

  • Caviness VS Jr (1982) Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H]thymidine autoradiography. Brain Res 256:293–302

    PubMed  Google Scholar 

  • Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737

    Article  PubMed  CAS  Google Scholar 

  • Chen WH, Morriss-Kay GM, Copp AJ (1995) Genesis and prevention of spinal neural tube defects in the curly tail mutant mouse: involvement of retinoic acid and its nuclear receptors RAR-beta and RAR-gamma. Development 121:681–691

    PubMed  CAS  Google Scholar 

  • Chong SS, Pack SD, Roschke AV, Tanigami A, Carrozzo R (1997) A revision of the lissencephaly and Miller-Dieker syndrome critical regions in chromosome 17p13.3. Hum Mol Genet 6:147–155

    Article  PubMed  CAS  Google Scholar 

  • Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A (1994) A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120:1919–1928

    PubMed  CAS  Google Scholar 

  • Corbo JC, Deuel TA, Long JM, LaPorte P, Tsai E, Wynshaw-Boris A, Walsh CA (2002) Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. J Neurosci 17:7548–7557

    Google Scholar 

  • Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68

    Article  PubMed  CAS  Google Scholar 

  • Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835

    Article  PubMed  CAS  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723

    Article  PubMed  CAS  Google Scholar 

  • Deng X, Bedford M, Li C, Xu X, Yang X, Dunmore J, Leder P (1997) Fibroblast growth factor receptor1 (FGFR1) is essential for normal neural tube and limb development. Dev Biol 185:42–54

    Article  PubMed  CAS  Google Scholar 

  • De Robertis EM, Oliver G, Wright CVE (1989) Determination of axial polarity in the vertebrate embryo: homeodomain proteins and homeogenetic induction. Cell 57:189–191

    Article  PubMed  Google Scholar 

  • Dobyns WB, Elias ER, Newlin AC, Pagon RA, Ledbetter DH (1992) Causal heterogeneity in isolated lissencephaly. Neurology 42:1375–1388

    PubMed  CAS  Google Scholar 

  • Dobyns WB, Reiner O, Carrozzo R, Ledbetter DH (1993) Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17pl3. JAMA 270:2838–2842

    Article  PubMed  CAS  Google Scholar 

  • Donoghue MJ, Rakic P (1999) Molecular gradients and compartments in the embryonic primate cerebral cortex. Cereb Cortex 9:586–600

    Article  PubMed  CAS  Google Scholar 

  • Ericson J, Muhr J, Placzek M, Lints T, Jessell TM, Edlund T (1995) Sonic hedgehog induces the differentiation of ventral forebrain neurons — a common signal for ventral patterning within the neural-tube. Cell 81:747–756

    Article  PubMed  CAS  Google Scholar 

  • Ericson J, Rashbass P, Schedl A, Brenner-Morton S, Kawakami A (1997) Pax6 controls progenitor cell identity and neuronal Fate in response to graded Shh signaling. Cell 90:169–180

    Article  PubMed  CAS  Google Scholar 

  • Fernandez AS, Pieau C, Reperant J, Boncinelli E, Wassef M (1998) Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–2111

    PubMed  CAS  Google Scholar 

  • Fleck MW, Hirotsune S, Gambello MJ, Phillips-Tansey E, Suares G (2000) Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. J Neurosci 20:2439–2450

    PubMed  CAS  Google Scholar 

  • Fleming A, Copp AJ (1998) Embryonic folate metabolism and mouse neural tube defects. Science 280:2107–2109

    Article  PubMed  CAS  Google Scholar 

  • Galceran J, Miyashita-Lin EM, Devaney E, Rubenstein JL, Grosschedl R (2000) Hippocampus development and generation of dentate gyrus granule cells is regulated by LEF1. Development 127:469–482

    PubMed  CAS  Google Scholar 

  • Gilmore EC, Ohshima T, Goffmet AM, Kulkarni AB, Herrup K (1998) Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J Neurosci 18:6370–6377

    PubMed  CAS  Google Scholar 

  • Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362

    Article  PubMed  CAS  Google Scholar 

  • Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–13

    Article  PubMed  CAS  Google Scholar 

  • Granata T, Farina L, Faiella A, Cardini R, D’Incerti L (1997) Familial schizencephaly associated with EMX2 mutation. Neurology 48:1403–1406

    PubMed  CAS  Google Scholar 

  • Greene ND, Copp AJ (1997) Inositol prevents folate-resistant neural tube defects in the mouse. Nat Med 3:60–66

    Article  PubMed  CAS  Google Scholar 

  • Gulisano M, Broccoli V, Pardini C, Boncinelli E (1996) Emx1 and Emx2 show different patterns of expression during proliferation and differentiation of the developing cerebral cortex in the mouse. Eur J Neurosci 8:1037–1050

    Article  PubMed  CAS  Google Scholar 

  • Gupta A, Tsai LH, Wynshaw-Boris A (2002) Life is a journey: a genetic look at neocortical development. Nat Rev Genet 3:342–355

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77:273–282

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann’s organizer and displays direct neuralizing activity. Cell 77:283–295

    Article  PubMed  CAS  Google Scholar 

  • Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC (1999) Direct binding of reelin to VLDL receptor and apoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JD, Soriano P (1999) Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99:485–497

    Article  PubMed  CAS  Google Scholar 

  • Hirotsune S, Fleck MW, Gambello MJ, Bix GJ, Chen A (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19:333–339

    Article  PubMed  CAS  Google Scholar 

  • Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96

    Article  PubMed  CAS  Google Scholar 

  • Hui CC, Joyner AL (1993) A mouse model of Greig cephalo-polysyndactyly syndrome: the extra-toesj mutation contains an intragenic deletion of the Gli3 gene. Nature Genetics 3:241–246

    Article  PubMed  CAS  Google Scholar 

  • Jostes B, Walther C, Gruss P (1991) The murine paired box gene, Pax7, is expressed specifically during the development of the nervous and muscular system. Mech. Dev. 33:27–38

    Article  Google Scholar 

  • Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain-hindbrain development. Trends Genet 12:15–20

    Article  PubMed  CAS  Google Scholar 

  • Joyner AL, Skarnes WC, Rossant J (1989) Production of a mutation in mouse En-2 gene by homologous recombination in embryonic stem cells. Nature 338:153–156

    Article  PubMed  CAS  Google Scholar 

  • Juriloff DM, Harris MJ (2000) Mouse modeis for neural tube closure defects. Hum Mol Genet 9:993–1000

    Article  PubMed  CAS  Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104

    Article  PubMed  CAS  Google Scholar 

  • Klingensmith J, Ang SL, Bachiller D, Rossant J (1999) Neural induction and patterning in the mouse in the absence of the node and its derivatives. Dev Biol 216:535–549

    Article  PubMed  CAS  Google Scholar 

  • Koleske AJ, Gifford AM, Scott ML, Nee M, Bronson RT (1998) Essential roles for the Abi and Arg tyrosine kinases in neurulation. Neuron 21:1259–1272

    Article  PubMed  CAS  Google Scholar 

  • Lanier LM, Gates MA, Witke W, Menzies AS, Wehman AM (1999) Mena is required for neurulation and commissure formation. Neuron 22:313–325

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Tole S, Grove E, McMahon AP (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127:457–467

    PubMed  CAS  Google Scholar 

  • Leyns L, Bouwmeester T, Kim SH, Piccolo S, De Robertis EM (1997) Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann organizer. Cell 88:747–756

    Article  PubMed  CAS  Google Scholar 

  • Levitt P (1984) A monoclonal antibody to limbic system neurons. Science 223:299–301

    Article  PubMed  CAS  Google Scholar 

  • Li JY, Joyner AL (2001) Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression. Development 128:4979–4991

    PubMed  CAS  Google Scholar 

  • Liem KF Jr, Tremmel G Jessell TM (1997) A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91:127–138

    Article  PubMed  CAS  Google Scholar 

  • Liem KF Jr, Remml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969–979

    Article  PubMed  CAS  Google Scholar 

  • Lomaga MA, Henderson JT, Elia AJ, Robertson J, Noyce RS (2000) Tumor necrosis factor receptor-associated factor 6 (TRAF6) deficiency results in exencephaly and is required for apoptosis within the developing CNS. J Neurosci 20:7384–7393

    PubMed  CAS  Google Scholar 

  • Lo Nigro C, Chong CS, Smith AC, Dobyns WB, Carrozzo R, Ledbetter DH (1997) Point mutations and an intragenic deletion in LIS1, the lissencephaly causative gene in isolated lissencephaly sequence and Miller-Dieker syndrome. Hum Mol Genet 6:157–164

    Article  PubMed  Google Scholar 

  • Lu CC, Brennan J, Robertson EJ (2001) From fertilization to gastrulation: axis formation in the mouse embryo. Curr Opin Genet Dev 11:384–392

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Mansouri A, Stoykova A, Gruss P (1994) Pax genes in development. J. Cell Sci (Suppl) 18:35–42

    CAS  Google Scholar 

  • Mansouri A, Hallonet M, Gruss P (1996 a) Pax genes and their role in cell differentiation and development. Curr Opin Cell Biol 8:851–857

    Article  PubMed  CAS  Google Scholar 

  • Mansouri A, Stoykova A, Torres M, Gruss P (1996b) Dysgenesis of cephalic neural crest derivatives in Pax 7-/-mutant mice. Development 122:831–838

    PubMed  CAS  Google Scholar 

  • Mansouri A, Gruss P (1998) Pax3 and Pax7 are expressed in commissural neurons and restrict ventral neuronal identity in the spinal cord. Mech Dev 78:171–178

    Article  PubMed  CAS  Google Scholar 

  • Mansouri A, Pia P, Larue L, Gruss P (2001) Pax3 acts cell autonomously in the neural tube and somites by controlling cell surface properties. Development 128:1995–2005

    PubMed  CAS  Google Scholar 

  • Matsuo I, Kuratani S, Kimura C, Takeda N, Aizawa S (1995) Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev 9:2646–2658

    Article  PubMed  CAS  Google Scholar 

  • McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085

    Article  PubMed  CAS  Google Scholar 

  • McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12:1438–1452

    Article  PubMed  CAS  Google Scholar 

  • Milenkovic L, Goodrich LV, Higgins KM, Scott MP (1999) Mouse patched1 controls body size determination and limb patterning. Development 126:4431–4440

    PubMed  CAS  Google Scholar 

  • Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridization and chick/quail homotopic grafts. Development 122:3785–3797

    PubMed  CAS  Google Scholar 

  • Ming JE, Kaupas ME, Roessler E, Brunner HG, Golabi M, Tekin M, Stratton RF, et al (2002) Mutations in PATCHED-1, the receptor for SONIC HEDGEHOG, are associated with holoprosencephaly. Hum Genet 110:297–301

    Article  PubMed  CAS  Google Scholar 

  • Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Rubenstein JL (1999) Early neocortical regionalization in the absence of thalamic innervation. Science 285:906–909

    Article  PubMed  CAS  Google Scholar 

  • Muenke M, Beachy PA (2000) Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev 10:262–269

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1:423–434

    Article  PubMed  CAS  Google Scholar 

  • Nagai T, Aruga J, Minowa O, Sugimoto T, Ohno Y (2000) Zic2 regulates the kinetics of neurulation. Proc Natl Acad Sci USA 97:1618–1623

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Johnson JE, O’Leary DD (1999) Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J Neurosci 19:10877–10885

    PubMed  CAS  Google Scholar 

  • Niehrs C (1999) Head in the WNT: the molecular nature of Spemann’s head organizer. Trends Genet 15:314–319

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Ward JM, Huh CG, Longenecker G, Veeranna (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93:11173–11178

    Article  PubMed  CAS  Google Scholar 

  • Pani L, Horal M, Loeken MR (2002) Rescue of neural tube defects in Pax-3-deficient embryos by p53 loss of function: implications for Pax-3-dependent development and tumorigenesis. Genes Dev 16:676–680

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A, Reichardt LF (2000) Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol 10:392–399

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini M, Mansouri A, Simeone A, Boncinelli E, Gruss P (1996) Dentate gyrus formation requires Emx2. Development 122:3893–3898

    PubMed  CAS  Google Scholar 

  • Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86:589–598

    Article  PubMed  CAS  Google Scholar 

  • Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710

    Article  PubMed  CAS  Google Scholar 

  • Porter FD, Drago J, Xu Y, Cheema SS, Wassif C (1997) Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124:2935–2944

    PubMed  CAS  Google Scholar 

  • Puelles L (2001) Evolution of the nervous system, brain segmentation and forebrain development in amniotes. Brain Research Bulletin 55:695–710

    Article  PubMed  CAS  Google Scholar 

  • Ragsdale CW, Grove EA (2001) Patterning the mammalian cerebral cortex. Curr Opin Neurobiol 11:50–58

    Article  PubMed  CAS  Google Scholar 

  • Regnier CH, Masson R, Kedinger V, Textoris J, Stoll I (2002) Impaired neural tube closure, axial skeleton malformations, and tracheal ring disruption in TRAF4-deficient mice. Proc Natl Acad Sci USA 99:5585–5590

    Article  PubMed  CAS  Google Scholar 

  • Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F (1993) Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364:717–721

    Article  PubMed  CAS  Google Scholar 

  • Rhinn M, Brand M (2001) The midbrain-hindbrain boundary organizer. Curr Opin Neurobiol 11:34–42

    Article  PubMed  CAS  Google Scholar 

  • Roelink H, Augsburger A, Heemskerk J, Korzh V, Norlin S (1994) Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 76:761–775

    Article  PubMed  CAS  Google Scholar 

  • Roelink H, Porter JA, Chiang C, Tanabe Y, Chang DT (1995) Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis. Cell 81:445–455

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JL, Martinez S, Shimamura K, Puelles L (1994) The embryonic vertebrate forebrain: the prosomeric model. Science 266:578–580

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JL, Rakic P (1999) Genetic control of cortical development. Cereb Cortex 9:521–523

    Article  PubMed  CAS  Google Scholar 

  • Rubenstein JL, Anderson S, Shi L, Miyashita-Lin E, Bulfone A, Hevner R (1999) Genetic control of cortical regionalization and connectivity. Cereb Cortex 9:524–532

    Article  PubMed  CAS  Google Scholar 

  • Sabapathy K, Jochum W, Hochedlinger K, Chang L, Karin M, Wagner EF (1999) Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech Dev 89:115–124

    Article  PubMed  CAS  Google Scholar 

  • Sah VP, Attardi LD, Mulligan GJ, Williams BO, Bronson RT, Jacks T (1995) A subset of p53-deficient embryos exhibit exeneephaly. Nat Genet 10:175–180

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM (1994) Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–790

    Article  PubMed  CAS  Google Scholar 

  • Sasai Y, Lu B, Steinbeisser H, De Robertis EM (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376:249–253

    Article  PubMed  Google Scholar 

  • Sauer B (1993) Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 225:890–900

    Article  PubMed  CAS  Google Scholar 

  • Schorle H, Meier P, Buchert M, Jaenisch R, Mitchell PJ (1996) Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature 381:235–238

    Article  PubMed  CAS  Google Scholar 

  • Schwarz M, Alvarez-Bolado G, Dressler G, Urbanek P, Busslinger M, Gruss P (1999) Pax2/5 and Pax6 subdivide the early neural tube into three domains. Mech Dev 82:29–39

    Article  PubMed  CAS  Google Scholar 

  • Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374:425–430

    Article  PubMed  CAS  Google Scholar 

  • Sheldon M, Rice DS, D’Arcangelo G, Yoneshima H, Nakajima K (1997) Scrambler and Yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389:730–733

    Article  PubMed  CAS  Google Scholar 

  • Sheppard AM, Pearlman AL (1997) Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J Comp Neurol 378:173–179

    Article  PubMed  CAS  Google Scholar 

  • Shimamura K, Rubenstein JL (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718

    PubMed  CAS  Google Scholar 

  • Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358:687–690

    Article  PubMed  CAS  Google Scholar 

  • Sisodiya SM, Free SL, Williamson KA, Mitchell TN, Willis C (2001) PAX6 haploinsufficiency causes cerebral malformation and olfactory dysfunction in humans. Nat Genet 28:214–246

    Article  PubMed  CAS  Google Scholar 

  • Smithells RW, Sheppard S, Schorah CJ, Seiler MJ, Nevin NC (1981) Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch Dis Child 56:911–918

    Article  PubMed  CAS  Google Scholar 

  • Spemann H, Mangold H (1924) Über die Induktion von Embryoanlagen durch Implantation artfremder Organisatoren. Roux Arch Entwicklungsmech 100:599–638

    Google Scholar 

  • Stoykova A, Gruss P (1994) Roles of Pax-genes in developing and adult brain as suggested by expression patterns. J Neurosci 14:1395–1412

    PubMed  CAS  Google Scholar 

  • Stoykova A, Götz M, Gruss P, Price J (1997) Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124:3765–3777

    PubMed  CAS  Google Scholar 

  • Stumpo DJ, Eddy RL Jr, Haley LL, Sait S, Shows TB (1998) Promoter sequence, expression, and fine chromosomal mapping of the human gene (MLP) encoding the MARCKS-like protein: identification of neighboring and linked polymorphic loci for MLP and MACS and use in the evaluation of human neural tube defects. Genomics 49:253–264

    Article  PubMed  CAS  Google Scholar 

  • Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Tole S, Goudreau G, Assimacopoulos S, Grove EA (2000) Emx2 is required for growth of the hippocampus but not for hippocampal field specification. J Neurosci 20:2618–2625

    PubMed  CAS  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    Article  PubMed  CAS  Google Scholar 

  • Tuttle R, Nakagawa Y, Johnson JE, O’Leary DD (1999) Defects in thalamocortical axon pathfinding correlate with altered cell domains in Mash-1-deficient mice. Development 126:1903–1916

    PubMed  CAS  Google Scholar 

  • Urbanek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M (1994) Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79:901–912

    Article  PubMed  CAS  Google Scholar 

  • Varlet I, Collignon J, Robertson EJ (1997) Nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124:1033–1044

    PubMed  CAS  Google Scholar 

  • Warren N, Caric D, Pratt T, Clausen JA, Asavaritikrai P (1999) The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cereb Cortex 9:627–635

    Article  PubMed  CAS  Google Scholar 

  • Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124:2923–2934

    PubMed  CAS  Google Scholar 

  • Wessely O, De Robertis EM (2002) Neural plate patterning by secreted signals. Neuron 33:489–491

    Article  PubMed  CAS  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075

    PubMed  CAS  Google Scholar 

  • Xuan S, Baptista CA, Balas G, Tao W, Soares VC, Lai E (1995) Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14:1141–1152

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Suda Y, Matsuo I, Miyamoto N, Takeda N, Kuratani S, Aizawa S (1997) Emxl and Emx2 functions in development of dorsal telencephalon. Development 124:101–111

    PubMed  CAS  Google Scholar 

  • Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Collombat, P., Mansouri, A. (2005). Molekulare Mechanismen von Fehlbildungen, Wachstums-, Differenzierungs- und Entwicklungsstörungen des Zentralnervensystems. In: Ganten, D., Ruckpaul, K. (eds) Molekularmedizinische Grundlagen von fetalen und neonatalen Erkrankungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26524-4_13

Download citation

Publish with us

Policies and ethics