Skip to main content

Chromosome 17-linked Frontotemporal dementia with Ubiquitin-Positive, Tau-Negative Inclusions

  • Conference paper
Genotype — Proteotype — Phenotype Relationships in Neurodegenerative Diseases

Summary

Familial forms of frontotemporal dementia (FTD) are in 10–43% of patients, caused by mutations in the gene encoding the microtubule associated protein tau (MAPT) located at chromosome 17q21. Neuropathologically, these patients are characterized by tau-positive depositions in brain. However, autosomal dominant forms of FTD without MAPT mutations have been reported, suggesting other tauopathy-related genetic defects. One such form is FTD linked to 17q21, with tau-negative but ubiquitine-positive neuronal inclusions or FTD-U. We previously reduced the candidate chromosomal region to 4.8 cM in a Dutch FTD-U family, 1083. A mutation in MAPT was excluded by genomic sequencing. More recently, we identified three Belgian FTD families of which two, DR2 and DR8, showed linkage to the 17q21 region. Both families shared a common haplotype in an 8.04 cM region, indicating that they are genetically related to a common founder. In the third family, DR7, we obtained an autopsy confirmation of the characteristic ubiquitin-positive, tau-negative neuronal inclusions. Currently, there are 11 FTD families linked to 17q21 that do not segregate a MAPT mutation, of which five are conclusively linked (LOD score > 3). Together the data suggest that FTD-U could represent an important subtype of FTD, and that identification of the underlying gene defect might significantly contribute to our understanding of the pathomechanism leading to neurodegeneration in this dementia subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basun H, Almkvist O, Axelman K, Brun A, Campbell TA, Collinge J, Forsell C, Froelich S, Wahlund LO, Wetterberg L, Lannfelt L (1997) Clinical characteristics of a chromosome 17-linked rapidly progressive familial frontotemporal dementia. Arch Neurol 54: 539–544.

    PubMed  Google Scholar 

  • Benson G (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27: 573–580.

    Article  PubMed  Google Scholar 

  • Benussi L, Signorini S, Ghidoni R, Alberici A, Barbiero L, Feudatari E, Gigola L, Nicosia F, Paterlini A, Strom T, Bettecken T, Meitinger T, Binetti G (2004) Identification of genetic loci associated with familial frontotemporal dementia. Neurobiol Aging 25: P4–149.

    Article  Google Scholar 

  • Bird TD, Wijsman EM, Nochlin D, Leehey M, Sumi SM, Payami H, Poorkaj P, Nemens E, Rafkind M, and Schellenberg GD (1997) Chromosome 17 and hereditary dementia: linkage studies in three non-Alzheimer families and kindreds with late-onset FAD. Neurology 48: 949–954.

    PubMed  Google Scholar 

  • Brown J, Ashworth A, Gydesen S, Sorensen A, Rossor M, Hardy J, Collinge J (1995) Familial nonspecific dementia maps to chromosome 3. Human Mol Genet 4: 1625–1628.

    Google Scholar 

  • Cruts M, van Duijn CM, Backhovens H, Van den BM, Wehnert A, Serneels S, Sherrington R, Hutton M, Hardy J, George-Hyslop PH, Hofman A, Van Broeckhoven C (1998). Estimation of the genetic contribution of presenilin-1 and-2 mutations in a population-based study of presenile Alzheimer disease. Human Mol Genet 7: 43–51.

    Article  Google Scholar 

  • Curcio SA, Kawarai T, Paterson AD, Maletta RG, Puccio G, Perri M, Di Natale M, Palermo S, Foncin JF, Hyslop PH, Bruni AC (2002) A large Calabrian kindred segregating frontotemporal dementia. J Neurol 249: 911–922.

    Article  PubMed  Google Scholar 

  • Dermaut B, Croes EA, Rademakers R, Van den BM, Cruts M, Hofman A, van Duijn CM, Van Broeckhoven C (2003) PRNP Val129 homozygosity increases risk for earl-onset Alzheimer's disease. Ann Neurol 53: 409–412.

    Article  PubMed  Google Scholar 

  • Froelich FS, Axelman P, Almkvist A, Basun H, Lannfelt L (2003) Extended investigation of tau and mutation screening of other candidate genes on chromosome 17q21 in a Swedish FTDP-17 family. Am J Med Genet 121B: 112–118.

    Article  Google Scholar 

  • Froelich S, Basun H, Forsell C, Lilius L, Axelman K, Andreadis A, Lannfelt L (1997) Mapping of a disease locus for familial rapidly progressive frontotemporal dementia to chromosome 17q12–21. Am J Med Genet 74: 380–385.

    Article  PubMed  Google Scholar 

  • Hodges JR, Davies R, Xuereb J, Kril J, Halliday G (2003) Survival in frontotemporal dementia. Neurology 61: 349–354.

    PubMed  Google Scholar 

  • Hodges JR, Davies RR, Xuereb JH, Casey B, Broe M, Bak TH, Kril JJ, Halliday GM (2004) Clinicopathological correlates in frontotemporal dementia. Ann Neurol 56: 399–406.

    Article  PubMed  Google Scholar 

  • Hofman A, Schulte W, Tanja TA, van Duijn CM, Haaxma R, Lameris AJ, Otten VM, Saan RJ (1989) History of dementia and Parkinson's disease in 1st-degree relatives of patients with Alzheimer's disease. Neurology 39: 1589–1592.

    PubMed  Google Scholar 

  • Hosler BA, Siddique T, Sapp PC, Sailor W, Huang MC, Hossain A, Daube JR, Nance M, Fan C, Kaplan J, Hung WY, McKenna-Yasek D, Haines JL, Pericak-Vance MA, Horvitz HR, Brown RH, Jr. (2000) Linkage of familial amyotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21–q22. JAMA 284: 1664–1669.

    Article  PubMed  Google Scholar 

  • Houlden H, Baker M, Adamson J, Grover A, Waring S, Dickson D, Lynch T, Boeve B, Petersen RC, Pickering-Brown S, Owen F, Neary D, Craufurd D, Snowden J, Mann D, Hutton M (1999) Frequency of tau mutations in three series of non-Alzheimer's degenerative dementia. Ann Neurol 46: 243–248.

    Article  PubMed  Google Scholar 

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen RC, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon JM, Nowotny P, Che LK, Norton J, Morris JC, Reed LA, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd PR, Hayward N, Kwok JBJ, Schofield PR, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra BA, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998) Association of missense and 5′splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393: 702–705.

    Article  PubMed  Google Scholar 

  • Josephs KA, Holton JL, Rossor MN, Godbolt AK, Ozawa T, Strand K, Khan N, Al Sarraj S, Revesz T (2004) Frontotemporal lobar degeneration and ubiquitin immunohistochemistry. Neuropathol Appl Neurobiol 30: 369–373.

    Article  PubMed  Google Scholar 

  • Kertesz A, Kawarai T, Rogaeva E, George-Hyslop P, Poorkaj P, Bird TD, Munoz DG (2000) Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology 54: 818–827.

    PubMed  Google Scholar 

  • Lathrop GM, Lalouel JM, Julier C, Ott J (1985) Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet 37: 482–498.

    PubMed  Google Scholar 

  • Lendon CL, Lynch T, Norton J, McKeel DW, Jr., Busfield F, Craddock N, Chakraverty S, Gopalakrishnan G, Shears SD, Grimmett W, Wilhelmsen KC, Hansen L, Morris JC, Goate AM (1998) Hereditary dysphasic disinhibition dementia: a frontotemporal dementia linked to 17q21–22. Neurology 50: 1546–1555.

    PubMed  Google Scholar 

  • Lipton AM, White CL, III, Bigio EH (2004) Frontotemporal lobar degeneration with motor neuron disease-type inclusions predominates in 76 cases of frontotemporal degeneration. Acta Neuropathol (Berl).

    Google Scholar 

  • Mackenzie IR, Feldman H (2004) Neuronal intranuclear inclusions distinguish familial FTD-MND type from sporadic cases. Dement Geriatr Cogn Disord 17: 333–336.

    Article  PubMed  Google Scholar 

  • McKhann GM, Albert MS, Grossman M, Miller B, Dickson D, Trojanowski JQ (2001) Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch Neurol 58: 1803–1809.

    Article  PubMed  Google Scholar 

  • Morris HR, Khan MN, Janssen JC, Brown JM, Perez-Tur J, Baker M, Ozansoy M, Hardy J, Hutton M, Wood NW, Lees AJ, Revesz T, Lantos P, Rossor MN (2001) The genetic and pathological classification of familial frontotemporal dementia. Arch Neurol 58: 1813–1816.

    Article  PubMed  Google Scholar 

  • Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, Cummings J, Benson DF (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51: 1546–1554.

    PubMed  Google Scholar 

  • Ott J (1989) Computer-simulation methods in human linkage analysis. Proc Natl Acad Sci USA 86: 4175–4178.

    PubMed  Google Scholar 

  • Paviour DC, Lees AJ, Josephs KA, Ozawa T, Ganguly M, Strand C, Godbolt A, Howard RS, Revesz T, Holton JL (2004) Frontotemporal lobar degeneration with ubiquitin-only-immunoreactive neuronal changes: broadening the clinical picture to include progressive supranuclear palsy. Brain. 127: 2441–2451

    Article  PubMed  Google Scholar 

  • Pickering-Brown S, Baker M, Adamson J, Melquist S, Nyborg A, Lindholm C, Hutton M, Mackenzie I (2004) Familial frontotemporal dementia with neuronal intranuclear inclusions is linked to chromosome 17. Soc Neurosci Abstr.97.9.

    Google Scholar 

  • Poorkaj P, Grossman M, Steinbart E, Payami H, Sadovnick A, Nochlin D, Tabira T, Trojanowski JQ, Borson S, Galasko D, Reich S, Quinn B, Schellenberg G, Bird TD (2001) Frequency of tau gene mutations in familial and sporadic cases of non-Alzheimer dementia. Arch Neurol 58: 383–387.

    Article  PubMed  Google Scholar 

  • Rademakers R, Cruts M, Dermaut B, Sleegers K, Rosso SM, Van den BM, Backhovens H, Van Swieten J, van Duijn CM, Van Broeckhoven C (2002) Tau negative frontal lobe dementia at 17q21: significant finemapping of the candidate region to a 4.8 cM interval. Mol Psychiatr 7: 1064–1074.

    Article  PubMed  Google Scholar 

  • Rademakers R, Cruts M, Van Broeckhoven C (2004a) The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Human Mutat 24: 277–295.

    Article  Google Scholar 

  • Rademakers R, van der Zee, J, Bogaerts V, Van den Bossche D, Backhovens H, De Pooter T, Bel Kacem S, van Duijn C, Del-Favero J, Van Broeckhoven C (2004b) Genomic sequencing of MAPT provides an extended SNP map and identifies >30 H1 subhaplotypes. Neurobiol Aging 25: P4–154.

    Article  Google Scholar 

  • Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58: 1615–1621.

    PubMed  Google Scholar 

  • Rizzu P, van Swieten JC, Joosse M, Hasegawa M, Stevens M, Tibben A, Niermeijer MF, Hillebrand M, Ravid R, Oostra BA, Goedert M, van Duijn CM, Heutink P (1999) High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Human Genet 64: 414–421.

    Article  Google Scholar 

  • Roks G, Dermaut B, Heutink P, Julliams A, Backhovens H, Van de BM, Serneels S, Hofman A, Van Broeckhoven C, van Duijn CM, Cruts M (1999) Mutation screening of the tau gene in patients with early-onset Alzheimer's disease. Neurosci Lett 277: 137–139.

    Article  PubMed  Google Scholar 

  • Rosso SM, Donker KL, Baks T, Joosse M, de K, I, Pijnenburg Y, de Jong D, Dooijes D, Kamphorst W, Ravid R, Niermeijer MF, Verheij F, Kremer HP, Scheltens P, van Duijn CM, Heutink P, van Swieten JC (2003) Frontotemporal dementia in The Netherlands: patient characteristics and prevalence estimates from a population-based study. Brain 126: 2016–2022.

    Article  PubMed  Google Scholar 

  • Rosso SM, Kamphorst W, de Graaf B, Willemsen R, Ravid R, Niermeijer MF, Spillantini MG, Heutink P, van Swieten JC (2001) Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–22. Brain 124: 1948–1957.

    Article  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Meth Mol Biol 132: 365–386.

    Google Scholar 

  • Stevens M, van Duijn CM, Kamphorst W, de Knijff P, Heutink P, van Gool WA, Scheltens P, Ravid R, Oostra BA, Niermeijer MF, van Swieten JC (1998) Familial aggregation in frontotemporal dementia. Neurology 50: 1541–1545.

    PubMed  Google Scholar 

  • van Duijn CM, Hendriks L, Farrer LA, Backhovens H, Cruts M, Wehnert A, Hofman A, Van Broeckhoven C (1994) A population-based study of familial Alzheimer disease: linkage to chromosomes 14, 19, and 21. Am J Human Genet 55: 714–727.

    Google Scholar 

  • Weckx S, De Rijk P, Van Broeckhoven C, Del Favero J (2004a). SNPbox, a modular software package for large scale primer design. Bioinformatics doi: 10.1093

    Google Scholar 

  • Weckx S, De Rijk P, Van Broeckhoven C, Del Favero J (2004b) SNPbox: web-based high-throughput primer design from gene to genome. Nucleic Acids Res 32: W170–W172.

    Article  PubMed  Google Scholar 

  • Weeks, Ott J, Lathrop GM (1990) SLINK: a general simulation program for linkage analysis. Am J Human Genet 47: A204.

    Google Scholar 

  • Zhukareva V, Vogelsberg-Ragaglia V, Van Deerlin VM, Bruce J, Shuck T, Grossman M, Clark CM, Arnold SE, Masliah E, Galasko D, Trojanowski JQ, Lee VM (2001) Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann Neurol 49: 165–175.

    Article  PubMed  Google Scholar 

  • Zhukareva V, Sundarraj S, Mann D, Sjogren M, Blenow K, Clark CM, McKeel DW, Goate A, Lippa CF, Vonsattel JP, Growdon JH, Trojanowski JQ, Lee VM (2003) Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: an international follow-up study. Acta Neuropathol (Berl) 105: 469–476.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rademakers, R., van der Zee, J., Kumar-Singh, S., Dermaut, B., Cruts, M., Van Broeckhoven, C. (2005). Chromosome 17-linked Frontotemporal dementia with Ubiquitin-Positive, Tau-Negative Inclusions. In: Cummings, J.L., Poncet, M., Hardy, J., Christen, Y. (eds) Genotype — Proteotype — Phenotype Relationships in Neurodegenerative Diseases. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26522-8_10

Download citation

Publish with us

Policies and ethics