Advertisement

Impedance and Mobility

  • L. Cremer
  • M. Heckl
  • B.A.T. Petersson
Chapter

Keywords

Acoustics EHDP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [5.1]
    Gardonio P. and Brennan M.J., 2002. On the origins and development of mobility and impedance methods in structural dynamics. Journal of Sound and Vibration, 249, p. 557CrossRefGoogle Scholar
  2. [5.2]
    Brownjon J.M.W., Steele G.H., Cawley P. and Adams R.D., 1980. Errors in mechanical impedance data obtained with impedance heads. Journal of Sound and Vibration, 73, p. 461CrossRefGoogle Scholar
  3. [5.3]
    Petersson B.A.T., 1984. The prerequisites for measuring mobility using annular transducer accessories. Journal of Sound and Vibration, 94, p. 495Google Scholar
  4. [5.4]
    Heckl M., 1956. Messungen an Schallbrücken zwischen Estrich und Rohdecke. Acustica, 6, p. 91Google Scholar
  5. [5.5]
    Elling W., 1954. Die Bestimmung grosser mechanischer Eingangsimpedanzen fester Körper im Frequenzband 50–3000 Hz, Acustica, 4, p 396Google Scholar
  6. [5.6]
    Muster D., 1958. Mechanical Impedance measurements. Colloquium on mechanical impedance methods for mechanical vibrations (R. Plunkett ed.). The American Society of Mechanical Engineers, Annual meeting, New York NYGoogle Scholar
  7. [5.7]
    Kuhl W., 1958. Über die akustischen und technischen Eigenschaften der Nachhallplatte. Rundfunktechnische Mitteilungen, 2, p. 111Google Scholar
  8. [5.8]
    Eggers F., 1959. Untersuchung von Corpus-Schwingungen am Violoncello. Acustica, 9, p. 453Google Scholar
  9. [5.9]
    Vogel S., 1956. Messleitungen für Biegewellen. Acustica, 6, p. 511Google Scholar
  10. [5.10]
    Scheuren J., 1989. Aktive Beeinflüssung der Ausbreitung von Biegewellen. Diss. TU-Berlin, BerlinGoogle Scholar
  11. [5.11]
    Cremer H. and Cremer L., 1948. Theorie der Enstehung des Klopfschalls, Frequenz, 2, p. 61Google Scholar
  12. [5.12]
    Lamb H., 1904. On the propagation of tremors over the surface of an elastic solid. Phil. Trans. Royal Society, A203, p. 1CrossRefGoogle Scholar
  13. [5.13]
    Petersson B.A.T. and Heckl M., 1996. Concentrated excitation of structures. Journal of Sound and Vibration, 196, p. 295CrossRefGoogle Scholar
  14. [5.14]
    Boussinesq J., 1885. Application des Potentiels a l'Etude de l'Equilibre et du Mouvement des Solides Elastiques. Gautier-Villars, PariszbMATHGoogle Scholar
  15. [5.15]
    Timoshenko S.P. and Goodier J.N., 1970. Theory of elasticity, Ch. 12. McGraw-Hill Book Company, AucklandzbMATHGoogle Scholar
  16. [5.16]
    Johnson K.L., 1985. Contact Mechanics, Ch. 2. Cambridge University Press, New York NYzbMATHGoogle Scholar
  17. [5.17]
    Heckl M., 1960. Untersuchungen an orthotropen Platten. Acustica, 10, p. 109MathSciNetzbMATHGoogle Scholar
  18. [5.18]
    Ljunggren S., 1983. Generation of waves in an elastic plate by a vertical force and by a moment in the vertical plane. Journal of Sound and Vibration, 90, p. 559zbMATHCrossRefGoogle Scholar
  19. [5.19]
    Möser M., Heckl M. and Ginters K-H., 1986. Zur Schallausbreitung in flüssigkeitsgefüllten kreiszylindrischen Rohren. Acustica, 60, p. 34Google Scholar
  20. [5.20]
    Petersson B.A.T., 1992. Structural acoustic power transmission by point moment and point force excitation; Part 1: Beam-and frame-like structures. Journal of Sound and Vibration, 160, p. 43CrossRefGoogle Scholar
  21. [5.21]
    Eichler E., 1964. Plate-edge admittances. Journal of the Acoustical Society of America, 36, p. 344CrossRefGoogle Scholar
  22. [5.22]
    Petersson B.A.T., 1992. Structural acoustic power transmission by point moment and point force excitation; Part 2: Plate-like structures. Journal of Sound and Vibration, 160, p. 67CrossRefGoogle Scholar
  23. [5.23]
    Stenzel H. and Brosze O., 1958. Leitfaden zur Berechnung von Schallvorgängen. Springer Verlag, BerlinGoogle Scholar
  24. [5.24]
    Hammer P. and Petersson B.A.T., 1988. Strip excitation; Part II: Upper and lower bounds for power transmission. Journal of Sound and Vibration, 129, p. 133CrossRefGoogle Scholar
  25. [5.25]
    Petersson B.A.T. and Hammer P., 1991. Strip excitation of slender beams. Journal of Sound and Vibration, 150, p. 217CrossRefGoogle Scholar
  26. [5.26]
    Courant R. and Hilbert D., 1953. Methods of Mathematical Physics, Vol. I. John Wiley & Sons, New York NYGoogle Scholar
  27. [5.27]
    Morse P.M. and Feshbach H., 1953. Methods of theoretical physics, Vol. 1, Chs. 5–8. McGraw-Hill, Boston MAzbMATHGoogle Scholar
  28. [5.28]
    Rayleigh J.W.S., 1945. Theory of sound (2nd ed.), Vols. 1, 2. Dover Publications, New York NYzbMATHGoogle Scholar
  29. [5.29]
    Petersson B.A.T., 1995. Building Acoustics, Vol. 2, 585–623. The liquid drop impact as a source of sound and vibrationGoogle Scholar
  30. [5.30]
    Gösele K., Reiher H. and Jekle R., 1960. Schalltechnische Untersuchungen an Holzbalkdecken. Berichte aus der Bauforschung, Heft 14. Ernst & Sohn, BerlinGoogle Scholar
  31. [5.31]
    Morse P.M. and Feshbach H., 1953. Methods of theoretical physics, Vol. 1, Chs. 4. McGraw-Hill, Boston MAzbMATHGoogle Scholar
  32. [5.32]
    Weck M. and Humpert R., 1989. Geräuschemission von Werkzeugmaschinen bie der Bearbeitung II. Schriftenreihe Bundesanstalt für Arbeitschutz, Fb 582. Wirtschaftsverlag, BremerhavenGoogle Scholar
  33. [5.33]
    McIntyre M.E., Schumacher R.T. and Woodhouse J., 1983. On the oscillations of musical instruments. Journal of the Acoustical Society of America, 74, p. 1325CrossRefGoogle Scholar
  34. [5.34]
    Fingberg U., 1990. Ein Modell für das Kurvenquietschen bei Schienenfahrzeugen. Fortschritt-Berichte VDI, Reihe 11, 140Google Scholar
  35. [5.35]
    Heckl M.A. and Abrahams I.D., 2000. Curve squeal of trains, part 1: Mathematical model for its generation. Journal of Sound and Vibration, 229, p. 669CrossRefGoogle Scholar
  36. [5.36]
    Remington P., 1987. Wheel/rail rolling noise, I: Theoretical analysis. Journal of the Acoustical Society of America, 81, p. 1805CrossRefGoogle Scholar
  37. [5.37]
    Thompson D.J., 1993. Wheel-rail noise generation, part I: Introduction and interaction model. Journal of Sound and Vibration, 161, p. 387CrossRefGoogle Scholar
  38. [5.38]
    Thompson D.J. et al., 1994. TWINS, Track-wheel interaction noise software. User manual and theoretical manual. TNO Institute of Applied Physics, DelftGoogle Scholar
  39. [5.39]
    Timoshenko S.P. and Young D.H., 1955. Vibration problems in engineering. D. van Nostrant Company Inc., PrincetownGoogle Scholar
  40. [5.40]
    Petersson B., 1990. Procedures for sound path quantification; definition of state-of-the-art. Part 5: Structure-borne sound transmission between machinery and foundations revisited; in particular rigid paths. Institute of Applied Physics, The Netherlands, TPD-SA-RPT-91-017Google Scholar
  41. [5.41]
    Sykes A.O., 1968. Development and application of linear multi-thermal network theory to vibration problems. Discs., The Catholic University of America, Washington D.C.Google Scholar
  42. [5.42]
    Mondot J-M. and Petersson B., 1987. Characterization of structure borne sound sources: The source descriptor and the coupling function. Journal of Sound and Vibration, 114, p. 507CrossRefGoogle Scholar
  43. [5.43]
    Beranek L., 1976. Noise and Vibration Control. McGraw-Hill, New York NYGoogle Scholar
  44. [5.44]
    Petersson B. and Plunt J., 1982. On effective mobilities in the prediction of structure-borne sound transmission between a source structure and a receiving structure, Part I. Journal of Sound and Vibration, 82, p. 517CrossRefGoogle Scholar
  45. [5.45]
    Moorhouse A. T. and Gibbs B. M., 1995. Towards a practical characterization for structure-borne sound sources based on mobility techniques. Journal of Sound and Vibration, 185, p. 737zbMATHCrossRefGoogle Scholar
  46. [5.46]
    R. A. Fulford and B. M. Gibbs, 1997. Structure-borne sound power and source characterisation in multi-point-connected systems, part 1: Case studies for assumed force distributions. Journal of Sound and Vibration, 204, p. 659CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • L. Cremer
    • 1
  • M. Heckl
    • 1
  • B.A.T. Petersson
    • 1
  1. 1.FG Technische AkustikTechnische Universität BerlinBerlinGermany

Personalised recommendations