Skip to main content

Single-Molecule Imaging of Diffusion, Recruitment, and Activation of Signaling Molecules in Living Cells

  • Chapter

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 8))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bussell SJ, Hammer DA, Koch DL (1994) The effect of hydrodynamic interactions on the tracer and gradient diffusion of integral membrane-proteins in lipid bilayers. J Fluid Mech 258:167–190

    Google Scholar 

  • Bussell SJ, Koch DL, Hammer DA (1995) Effect of hydrodynamic interactions on the diffusion of integral membrane proteins: diffusion in plasma membranes. Biophys J 68:1836–1849

    PubMed  Google Scholar 

  • De Brabander M, Geuens G, Nuydens R, Moeremans M, De Mey J (1985) Probing microtubule-dependent intracellular motility with nanometre particle video ultramicroscopy (nanovid ultramicroscopy). Cytobios 43:273–283

    PubMed  Google Scholar 

  • De Brabander M, Nuydens R, Geerts H, Hopkins CR (1988) Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil Cytoskeleton 9:30–47

    Article  PubMed  Google Scholar 

  • De Brabander M, Nuydens R, Ishihara A, Holifield B, Jacobson K, Geerts H (1991) Lateral diffusion and retrograde movements of individual cell surface components on single motile cells observed with nanovid microscopy. J Cell Biol 112:111–124

    Article  PubMed  Google Scholar 

  • Draganescu A, Hodawadekar SC, Gee KR, Brenner C (2000) Fhit-nucleotide specificity probed with novel fluorescent and fluorogenic substrates. J Biol Chem 275:4555–4560

    Article  PubMed  Google Scholar 

  • Feder TJ, Brust-Mascher I, Slattery JP, Baird B, Webb WW (1996) Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys J 70:2767–2773

    PubMed  Google Scholar 

  • Fujiwara T, Ritchie K, Murakoshi H, Jacobson K, Kusumi A (2002) Phospholipids undergo hop diffusion in compartmentalized cell membrane. J Cell Biol 157:1071–1081

    Article  PubMed  Google Scholar 

  • Gamberucci A, Innocenti B, Fulceri R, Banhegyi G, Giunti R, Pozzan T, Benedetti A (1994) Modulation of Ca2+ influx dependent on store depletion by intracellular adenine-guanine nucleotide levels. J Biol Chem 269:23597–23602

    PubMed  Google Scholar 

  • Gelles J, Schnapp BJ, Sheetz MP (1988) Tracking kinesin-driven movements with nanometre-scale precision. Nature 331:450–453

    Article  PubMed  Google Scholar 

  • Ghosh RN, Webb WW (1994) Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules. Biophys J 66:1301–1318

    PubMed  Google Scholar 

  • Harms GS, Cognet L, Lommerse PH, Blab GA, Kahr H, Gamsjager R, Spaink HP, Soldatov NM, Romanin C, Schmidt T (2001) Single-molecule imaging of l-type Ca(2+) channels in live cells. Biophys J 81:2639–2646

    PubMed  Google Scholar 

  • Hegener O, Prenner L, Runkel F, Baader SL, Kappler J, Haberlein H (2004) Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry 43:6190–6199

    Article  PubMed  Google Scholar 

  • Hibino K, Watanabe TM, Kozuka J, Iwane AH, Okada T, Kataoka T, Yanagida T, Sako Y (2003) Single-and multiple-molecule dynamics of the signaling from H-Ras to cRaf-1 visualized on the plasma membrane of living cells. Chem Phys Chem 4:748–753

    PubMed  Google Scholar 

  • Iino R, Kusumi A (2001) Single-fluorophore dynamic imaging in living cells. J Fluorescence 11:187–195

    Article  Google Scholar 

  • Iino R, Koyama I, Kusumi A (2001) Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys J 80:2667–2677

    PubMed  Google Scholar 

  • Kobayashi T, Storrie B, Simons K, Dotti CG (1992) A functional barrier to movement of lipids in polarized neurons. Nature 359:647–650

    Article  PubMed  Google Scholar 

  • Krengel U, Schlichting L, Scherer A, Schumann R, Frech M, John J, Kabsch W, Pai EF, Wittinghofer A (1990) Three-dimensional structures of H-ras p21 mutants: molecular basis for their inability to function as signal switch molecules. Cell 62:539–548

    Article  PubMed  Google Scholar 

  • Kucik DF, Elson EL, Sheetz MP (1989) Forward transport of glycoproteins on leading lamelli-podia in locomoting cells. Nature 340:315–317

    Article  PubMed  Google Scholar 

  • Kusumi A, Sako Y (1996) Cell surface organization by the membrane skeleton. Curr Opin Cell Biol 8:566–574

    Article  PubMed  Google Scholar 

  • Kusumi A, Sako Y, Yamamoto M (1993) Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J 65:2021–2040

    PubMed  Google Scholar 

  • Li W, Han M, Guan KL (2000) The leucine-rich repeat protein SUR-8 enhances MAP kinase activation and forms a complex with Ras and Raf. Genes Dev 14:895–900

    PubMed  Google Scholar 

  • Lommerse PH, Blab GA, Cognet L, Harms GS, Snaar-Jagalska BE, Spaink HP, Schmidt T (2004) Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86:609–616

    PubMed  Google Scholar 

  • Mashanov GI, Tacon D, Peckham M, Molloy JE (2004) The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts. J Biol Chem 279:15274–15280

    Article  PubMed  Google Scholar 

  • McEwen D, Gee K, Kang H, Neubig R (2001) Fluorescent BODIPY-GTP analogs: real-time measurement of nucleotide binding to G proteins. Anal Biochem 291:109–117

    Article  PubMed  Google Scholar 

  • Mineo C, James GL, Smart EJ, Anderson RG (1996) Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem 271:11930–11935

    Article  PubMed  Google Scholar 

  • Murakoshi H, Iino R, Kobayashi T, Fujiwara T, Ohshima C, Yoshimura A, Kusumi A (2004) Singlemolecule imaging analysis of Ras activation in living cells. Proc Natl Acad Sci USA 101: 7317–7322

    Article  PubMed  Google Scholar 

  • Murase K, Fujiwara T, Umemura Y, Suzuki K, Iino R, Yamashita H, Saito M, Murakoshi H, Ritchie K, Kusumi A (2004) Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys J 86:4075–4093

    Article  PubMed  Google Scholar 

  • Nagle JF (1992) Long tail kinetics in biophysics? Biophys J 63:366–370

    PubMed  Google Scholar 

  • Nakada C, Ritchie K, Oba Y, Nakamura M, Hotta Y, Iino R, Kasai RS, Yamaguchi K, Fujiwara T, Kusumi A (2003) Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat Cell Biol 5:626–632

    Article  PubMed  Google Scholar 

  • Nelson S, Horvat RD, Malvey J, Roess DA, Barisas BG, Clay CM (1999) Characterization of an intrinsically fluorescent gonadotropin-releasing hormone receptor and effects of ligand binding on receptor lateral diffusion. Endocrinology 140:950–957

    Article  PubMed  Google Scholar 

  • Niv H, Gutman O, Henis YI, Kloog Y (1999) Membrane interactions of a constitutively active GFPKi-Ras 4B and their role in signaling. Evidence from lateral mobility studies. J Biol Chem 274:1606–1613

    Article  PubMed  Google Scholar 

  • Niv H, Gutman O, Kloog Y, Henis YI (2002) Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J Cell Biol 157:865–872

    Article  PubMed  Google Scholar 

  • Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273:1392–1395

    PubMed  Google Scholar 

  • Paller MS (1994) Lateral mobility of Na,K-ATPase and membrane lipids in renal cells. Importance of cytoskeletal integrity. J Membr Biol 142:127–135

    PubMed  Google Scholar 

  • Parton RG, Hancock JF (2004) Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol 14:141–147

    Article  PubMed  Google Scholar 

  • Paz A, Haklai R, Elad-Sfadia G, Ballan E, Kloog Y (2001) Galectin-1 binds oncogenic H-Ras to mediate Ras membrane anchorage and cell transformation. Oncogene 20:7486–7493

    Article  PubMed  Google Scholar 

  • Peters R, Cherry RJ (1982) Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbrück equations. Proc Natl Acad Sci USA 79:4317–4321

    PubMed  Google Scholar 

  • Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375

    Article  PubMed  Google Scholar 

  • Prior IA, Muncke C, Parton RG, Hancock JF (2003) Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J Cell Biol 160:165–170

    Article  PubMed  Google Scholar 

  • Rebollo A, Martinez AC (1999) Ras proteins: recent advances and new functions. Blood 94:2971–2980

    PubMed  Google Scholar 

  • Rotblat B, Prior IA, Muncke C, Parton RG, Kloog Y, Henis YI, Hancock JF (2004) Three separable domains regulate GTP-dependent association of H-ras with the plasma membrane. Mol Cell Biol 24:6799–6810

    Article  PubMed  Google Scholar 

  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  PubMed  Google Scholar 

  • Roy S, Luetterforst R, Harding A, Apolloni A, Etheridge M, Stang E, Rolls B, Hancock JF, Parton RG (1999) Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterolrich plasma membrane domains. Nat Cell Biol 1:98–105

    Article  PubMed  Google Scholar 

  • Saffman PG, Delbrück M (1975) Brownian motion in biological membranes. Proc Natl Acad Sci USA 72:3111–3113

    PubMed  Google Scholar 

  • Sako Y, Kusumi A (1994) Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J Cell Biol 125:1251–1264

    Article  PubMed  Google Scholar 

  • Sako Y, Kusumi A (1995) Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: fence versus tether. J Cell Biol 129:1559–1574

    Article  PubMed  Google Scholar 

  • Sako Y, Nagafuchi A, Tsukita S, Takeichi M, Kusumi A (1998) Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J Cell Biol 140:1227–1240

    Article  PubMed  Google Scholar 

  • Sako Y, Sato SB, Ohnishi S (1990) Subpopulations of endosomes generated at sequential stages in the endocytic pathway of asialoganglioside-containing ferrite ligands in rat liver. J Biochem (Tokyo) 107:846–853

    PubMed  Google Scholar 

  • Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2:168–172

    Article  PubMed  Google Scholar 

  • Satoh T, Nakafuku M, Kaziro Y (1992) Function of Ras as a molecular switch in signal transduction. J Biol Chem 267:24149–24152

    PubMed  Google Scholar 

  • Saxton MJ (1989) The spectrin network as a barrier to lateral diffusion in erythrocytes. A percolation analysis. Biophys J 55:21–28

    PubMed  Google Scholar 

  • Saxton MJ (1990) The membrane skeleton of erythrocytes. A percolation model. Biophys J 57:1167–1177

    PubMed  Google Scholar 

  • Saxton MJ (1994) Single-particle tracking: models of directed transport. Biophys J 67:2110–2119

    PubMed  Google Scholar 

  • Saxton MJ (1996) Anomalous diffusion due to binding: a Monte Carlo study. Biophys J 70:1250–1262

    PubMed  Google Scholar 

  • Saxton MJ, Jacobson K (1997) Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct 26:373–399

    Article  PubMed  Google Scholar 

  • Schmidt K, Nichols BJ (2004) A barrier to lateral diffusion in the cleavage furrow of dividing mammalian cells. Curr Biol 14:1002–1006

    Article  PubMed  Google Scholar 

  • Schmidt T, Schütz GJ, Baumgartner W, Grüber HJ, Schindler H (1995) Characterization of photophysics and mobility of single molecules in a fluid lipid-membrane. J Phys Chem 99:17662–17668

    Article  Google Scholar 

  • Schnapp BJ, Gelles J, Sheetz MP (1988) Nanometer-scale measurements using video light microscopy. Cell Motil Cytoskeleton 10:47–53

    Article  PubMed  Google Scholar 

  • Schütz GJ, Kada G, Pastushenko VP, Schindler H (2000a) Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J 19:892–901

    Article  PubMed  Google Scholar 

  • Schütz GJ, Sonnleitner M, Hinterdorfer P, Schindler H (2000b) Single molecule microscopy of biomembranes (review). Mol Membr Biol 17:17–29

    Article  PubMed  Google Scholar 

  • Sheetz MP (1983) Membrane skeletal dynamics’ role in modulation of red-cell deformability, mobility of transmembrane proteins, and shape. Semin Hematol 20:175–188

    PubMed  Google Scholar 

  • Sheetz MP, Schindler M, Koppel DE (1980) Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 285:510–511

    Article  PubMed  Google Scholar 

  • Sheetz MP, Turney S, Qian H, Elson EL (1989) Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 340:284–288

    Article  PubMed  Google Scholar 

  • Sieburth DS, Sun Q, Han M (1998) SUR-8, a conserved Ras-binding protein with leucine-rich repeats, positively regulates Ras-mediated signaling in C. elegans. Cell 94:119–130

    Article  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    PubMed  Google Scholar 

  • Takeuchi M, Miyamoto H, Sako Y, Komizu H, Kusumi A (1998) Structure of the erythrocyte membrane skeleton as observed by atomic force microscopy. Biophys J 74:2171–2183

    PubMed  Google Scholar 

  • Tank DW, Wu ES, Webb WW (1982) Enhanced molecular diffusibility in muscle membrane blebs: release of lateral constraints. J Cell Biol 92:207–212

    Article  PubMed  Google Scholar 

  • Tomishige M, Sako Y, Kusumi A (1998) Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J Cell Biol 142:989–1000

    Article  PubMed  Google Scholar 

  • Tsuji A, Ohnishi S (1986) Restriction of the lateral motion of band 3 in the erythrocyte membrane by the cytoskeletal network: dependence on spectrin association state. Biochemistry 25:6133–6139

    Article  PubMed  Google Scholar 

  • Tsuji A, Kawasaki K, Ohnishi S, Merkle H, Kusumi A (1988) Regulation of band 3 mobilities in erythrocyte ghost membranes by protein association and cytoskeletal meshwork. Biochemistry 27:7447–7452

    Article  PubMed  Google Scholar 

  • Vrljic M, Nishimura SY, Brasselet S, Moerner WE, McConnell HM (2002) Translational diffusion of individual class II MHC membrane proteins in cells. Biophys J 83:2681–2692

    PubMed  Google Scholar 

  • Wakatsuki T, Schwab B, Thompson NC, Elson EL (2001) Effects of cytochalasin D and latrunculin B on mechanical properties of cells. J Cell Sci 114:1025–1036

    PubMed  Google Scholar 

  • Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, Tsuneoka M, Komiya S, Baron R, Yoshimura A (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412:647–651

    Article  PubMed  Google Scholar 

  • Winckler B, Forscher P, Mellman I (1999) A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397:698–701

    Article  PubMed  Google Scholar 

  • Wu C, Butz S, Ying Y, Anderson RG (1997) Tyrosine kinase receptors concentrated in caveolae-like domains from neuronal plasma membrane. J Biol Chem 272:3554–3559

    Article  PubMed  Google Scholar 

  • Wu ES, Tank DW, Webb WW (1982) Unconstrained lateral diffusion of concanavalin A receptors on bulbous lymphocytes. Proc Natl Acad Sci USA 79:4962–4966

    PubMed  Google Scholar 

  • Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kusumi, A., Murakoshi, H., Murase, K., Fujiwara, T. (2005). Single-Molecule Imaging of Diffusion, Recruitment, and Activation of Signaling Molecules in Living Cells. In: Damjanovich, S. (eds) Biophysical Aspects of Transmembrane Signaling. Springer Series in Biophysics, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26511-2_5

Download citation

Publish with us

Policies and ethics