Mapping 3D Geo-Bodies Based on Level Set and Marching Methods

  • Stine Kjersti Richardsen
  • Trygve Randen
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 7)


In this chapter, a simplified method for mapping objects based on the level set method is introduced. Level set and marching methods are used to map connected volumes within 3D seismic data. The simpler marching method solves the stationary problem stated by the level set formulation. The evolution of the object, from a seed point to the boundary, is described by a differential equation.


Seismic Data Velocity Function Seed Point Group Node Eikonal Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Balabel (2001) Numerical simulation of gas-liquid interface dynamics using the level set method. PhD thesis, RWTH Aachen.Google Scholar
  2. 2.
    A. Blake and M. Isard (1998) Active Contours. Springer.Google Scholar
  3. 3.
    J. Canny (1986) A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), 679–698.CrossRefGoogle Scholar
  4. 4.
    R.B. Dial (1971) A Probabilistic Multipath Traffic Assignment Model which Obviates Path Enumeration. Transportation Research 5, 83–111.CrossRefGoogle Scholar
  5. 5.
    E.W. Dijkstra (1959) A Note on Two Problems in Connection with Graphs. Numerische Mathematik 1, 269–271.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Gomes and O. Faugeras (1999) Reconciling distance functions and level sets. Technical report, INRIA Sophia Antipolis.Google Scholar
  7. 7.
    R.C. Gonzalez and R.E. Woods (1992) Digital image processing. Addison-Wesley.Google Scholar
  8. 8.
    V. Hadziavdiz (2000) A comparative study of active contour models for boundary detection in brain images. Master’s thesis, University of Tromsø.Google Scholar
  9. 9.
    H. Holden and N.H. Risebro (2002) Front tracking for hyperbolic conservation laws. Springer.Google Scholar
  10. 10.
    K.H. Karlsen, K.A. Lie, and N.H. Risebro (2000) A fast level set method for reservoir simulation. Computational Geosciences 4(2), 185–206.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. Kim (2001) An O(N) level set method for eikonal equations (2001) SIAM Journal of Scientific Computation 22(6), 2178–2193.zbMATHCrossRefGoogle Scholar
  12. 12.
    R. Malladi and J.A. Sethian (1997) Level set methods for curvature flow, image enchancement, and shape recovery in medical images. Visualization and Mathematics, Springer-Verlag, 329–345.Google Scholar
  13. 13.
    S. Osher and R. Fedkiw (2003) Level Set Methods and Dynamic Implicit Surfaces. Springer, 2003.Google Scholar
  14. 14.
    S. Osher and J.A. Sethian (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics 79(12–49), 898–903.MathSciNetGoogle Scholar
  15. 15.
    C. Pozrikidis (1997) Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press.Google Scholar
  16. 16.
    T. Randen, E. Monsen, C. Signer, A. Abrahamsen, J.O. Hansen, T. Sæter, J. Schlaf, and L. Sønneland (2000) Three-dimensional texture attributes for seismic data analysis. 70th Ann. Internat. Mtg: Soc. of Expl. Geophys., 668–671.Google Scholar
  17. 17.
    J.A. Sethian. Scholar
  18. 18.
    J.A. Sethian (1996) Level Set Methods and Fast Marching Methods. Cambridge University Press.Google Scholar
  19. 19.
    J.A. Sethian (1996) A Fast Marching Level Set Method for Monotonically Advancing Fronts. Proceedings of the National Academy of Science 93(4), 1591–1595.zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    I.N. Sneddon (1957) Elements of Partial Differential Equations. International Series in Pure and Applied Mathematics, volume IX, McGraw-Hill.Google Scholar
  21. 21.
    P. Soille (2003) Morphological Image Processing. Springer, 2nd edition.Google Scholar
  22. 22.
    J. Suri, K. Liu, S. Singh, S.N. Laxminarayan, X. Zeng, and L. Reden (2002) Shape recovery algorithms using level sets in 2D/3D medical imagery: a state-of-the-art review. IEEE Transactions on Information Technology in Biomedicine 6(1).Google Scholar
  23. 23.
    W.G. Vincenti and C.H. Kruger (1975) Introduction to Physical Gas Dynamics. Huntington.Google Scholar
  24. 24.
    O. Yilmaz (1987) Seismic Data Processing. Society of Exploration Geophysicists.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Stine Kjersti Richardsen
    • 1
  • Trygve Randen
    • 2
  1. 1.Stavanger University College, TekNatStavangerNorway
  2. 2.Schlumberger Stavanger ResearchStavangerNorway

Personalised recommendations