Geological Model Building: A Hierarchical Segmentation Approach

  • Erik Monsen
  • Trygve Randen
  • Lars Sønneland
  • Jan E. Odegard
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 7)


A new approach towards model building with the promise of significantly shortening the turnaround time of 3D model building is presented. By introducing a unified framework, efficient representation of models throughout the lifecycle of a reservoir is enabled, all the way from velocity to simulation models. All levels of resolution are maintained and handled simultaneously and information is structured according to geological understanding. This enables the interpreter to work with pre-generated geological objects, rather than spending time creating them in the first place. Consequently, more time is spent being creative, gaining a better understanding of the reservoir. Furthermore, the framework enables use of new semi- or fully automatic interpretation schemes and provides real-time user interaction with large volumes.


Seismic Data Sequence Stratigraphy Depositional Sequence Mathematical Morphology Salt Dome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The MPEG Home Page. Scholar
  2. 2.
    Schlumberger Oilfield Glossary. Scholar
  3. 3.
    U. Albertin, J. Kapoor, R. Randall, M. Smith, G. Brown, C. Soufleris, P. Whitfield, R. Dewey, J. Farnsworth, G. Grubitz, and M. Kemme (2002) The time for depth imaging. Oilfield Review.Google Scholar
  4. 4.
    M. Bahorich and S. Farmer (1995) 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. The Leading Edge 14(10), 1053–1058.CrossRefGoogle Scholar
  5. 5.
    S. Beucher (1999) Mathematical morphology and geology: when image analysis uses the vocabulary of earth science: a review of some applications. Proceedings of GeoVision, 13–16.Google Scholar
  6. 6.
    S. Beucher and C. Lantuéjoul (1979) Use of watersheds in contour detection. Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation.Google Scholar
  7. 7.
    A. Carrillat, T. Randen, L. Sønneland, and G. Elvebakk (2002) Automated mapping of carbonate mounds using 3D seismic texture attributes. Proceedings of the Society of Exploration Geophysicists, Annual Meeting.Google Scholar
  8. 8.
    A. Carrillat and B. Vallès (2004) From 3d seismic facies to reservoir simulation: an example from the Grane field. This volume.Google Scholar
  9. 9.
    H. Digabel and C. Lantuéjoul (1977) Iterative algorithms. Proc. 2nd European Symp. on Quantitative Anal. Microstructures in Material Science, Biology and Medicine, J.L. Chermant (ed.), 85–99.Google Scholar
  10. 10.
    G.C. Fehmers and C.F.W. Höcker (2003) Fast structural interpretation with structure-oriented filtering. Geophysics 68(4), 1286–1293.CrossRefGoogle Scholar
  11. 11.
    D. Gao (2003) Volume texture extraction for 3D seismic visualization and interpretation. Geophysics 68(4), 1294–1302.CrossRefGoogle Scholar
  12. 12.
    J. Grötsch and C. Mercadier (1999) Integrated 3-D reservoir modeling based on 3-D seismic: the tertiary Malampaya and Camago buildups, offshore Palawan, Philippines. AAPG Bulletin 83(11), 1703–1728.Google Scholar
  13. 13.
    H.K. Hahn and H.-O. Peitgen (2003) IWT-Interactive Watershed Transform: a hierarchical method for efficient interactive and automated segmentation of multidimensional grayscale images. Proceedings of Medical Imaging, SPIE.Google Scholar
  14. 14.
    B.S. Manjunath, P. Salembier, and T. Sikora (2002) Introduction to MPEG-7: Multimedia Content Description Interface. John Wiley & Sons, Ltd.Google Scholar
  15. 15.
    F. Meyer (2001) An overview of morphological segmentation. Int. Journal of Pattern Recognition and Artificial Intelligence 15(7), 1089–1117.CrossRefGoogle Scholar
  16. 16.
    F. Meyer (2003) Morphological segmentation: recent advances-part 2. Tutorial at the International Conference on Image Processing.Google Scholar
  17. 17.
    R.M. Mitchum, P.R. Vail, and J.B. Sangree (1977) Seismic stratigraphy: applications to hydrocarbon exploration. Seismic stratigraphy and global changes of sea level, AAPG Memoir., part 6–7.Google Scholar
  18. 18.
    E. Monsen and J.E. Ødegård (2002) Segmentation of seismic data with complex stratigraphy using watershedding. Proceedings of the 10th Digital Signal Processing Workshop, 13–16 October, 2002, 68–71.Google Scholar
  19. 19.
    E. Monsen, J.E. Ødegård, J. Romberg, H. Choi, and R.G. Baraniuk (2001) Seismic texture classification by hidden Markov tree modeling of the complex wavelet transform. Proceedings of Norwegian Signal Processing Society.Google Scholar
  20. 20.
    E. Monsen and T. Randen (2001) Local 3d texture anisotropy analysis of seismic reflection data. Proceedings of 12th Scandinavian Conference on Image Analysis.Google Scholar
  21. 21.
    J. Neal, D. Risch, and P. Vail (1993) Sequence stratigraphy-A global theory for local success. Oilfield Review, 51–62, January 1993.Google Scholar
  22. 22.
    P. Steeghs, R. Baraniuk and J.E. Odegard (2003) Time-frequency analysis of seismic reflection data. Applications in Time-Frequency Signal Processing, A. Papandreou-Suppappola (ed.), CRC Press.Google Scholar
  23. 23.
    H.W. Posamentier and D.P. James (1993) An overview of sequence-stratigraphic concepts: uses and abuses. Sequence stratigraphy and facies associations. Special Publication of the International Association of Sedimentologists, no. 18. Blackwell Scientific Publications, 3–18.Google Scholar
  24. 24.
    T. Randen, E. Monsen, C. Signer, A. Abrahamsen, J.O. Hansen, T. Sæter, and J. Schlaf (2000) Three-dimensional texture attributes for seismic data analysis. Proceedings of the Society of Exploration Geophysicists Annual Meeting.Google Scholar
  25. 25.
    T. Randen, L. Sønneland, A. Carrillat, T.S. Valen, T. Skov, S.I. Pedersen, B. Rafaelsen, and G. Elvebakk (2003) Preconditioning for optimal 3D stratigraphical and structural inversion. Proc. 65th EAGE Conference & Exhibition.Google Scholar
  26. 26.
    T. Randen and L. Sønneland (2004) Atlas of 3d seismic attributes. This volume.Google Scholar
  27. 27.
    T.M. Roerdink and A. Meijster (2001) The watershed transform: definitions, algorithms and parallelization strategies. Fundamenta Informaticae 41, 187–228.MathSciNetGoogle Scholar
  28. 28.
    P. Salembier and L. Garrido (2000) Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans. Image Proc 9(4), 561–576.CrossRefGoogle Scholar
  29. 29.
    P. Salembier, J. Llach, and L. Garrido (2002) Visual segment tree creation for MPEG-7 description schemes. Pattern Recognition 35(3), 563–579.CrossRefzbMATHGoogle Scholar
  30. 30.
    R.M. Schoch (1989) Stratigraphy: Principles and Methods. Van Nostrand Reinhold, New York.Google Scholar
  31. 31.
    J. Serra (1982) Image Analysis and Mathematical Morphology. Academic Press, New York.zbMATHGoogle Scholar
  32. 32.
    R.E. Sheriff and L.P. Geldart (1999) Exploration Seismology. Cambridge University Press, 2nd edition.Google Scholar
  33. 33.
    J. Shi and J. Malik (2000) Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. and Machine Intell. 22(8), 888–905.CrossRefGoogle Scholar
  34. 34.
    J. Sijbers, P. Scheunders, M. Verhoye, A. Van der Linden, D. Van Dyck, and E. Raman (1997) Watershed-based segmentation of 3D MR data for volume quantization. Magnetic Resonance Imaging 15(4).Google Scholar
  35. 35.
    P. Soille (2003) Morphological Image Analysis-Principles and Applications. Springer-Verlag, 2nd edition.Google Scholar
  36. 36.
    P. Steeghs and G. Drijkoningen (2001) Seismic sequence analysis and attribute extraction using quadratic time-frequency representations. Geophysics 66(6), 1947–1959.CrossRefGoogle Scholar
  37. 37.
    T.P.H. Steeghs (1997) Local power spectra and seismic interpretation. PhD thesis, Tech. Univ. Delft, The Netherlands.Google Scholar
  38. 38.
    M.T. Taner, F. Koehler, and R.E. Sheriff (1979) Complex seismic trace analysis. Geophysics 44, 1041–1063.CrossRefGoogle Scholar
  39. 39.
    M.T. Taner, J.S. Schuelke, R. O’Doherty, and E. Baysal (1994) Seismic attributes revisited. Proceedings of the 64th Annual International Meeting, vol. 94, Society of Exploration Geophysisists, 1104–1106.Google Scholar
  40. 40.
    J. Tveiten (1992) Automatisk horisontfølging i tredimensjonale seismiske volumer. Master’s thesis, Stavanger University College.Google Scholar
  41. 41.
    P.R. Vail, J. Hardenbol, and R.G. Todd (1984) Jurassic unconformities, chronostratigraphy, and sea-level changes from seismic stratigraphy and biostratigraphy. Interregional Unconformities and Hydrocarbon Accumulation, AAPG Memoir., no. 36, 129–144.Google Scholar
  42. 42.
    L. Vincent and P. Soille (1991) Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Analysis and Machine Intelligence 13(6), 583–598.CrossRefGoogle Scholar
  43. 43.
    B.P. West, S.R. May, J.E. Eastwood, and C. Rossen (2002) Interactive seismic facies classification using textural attributes and neural networks. The Leading Edge 10, 1042–1049.CrossRefGoogle Scholar
  44. 44.
    F. Zanoguera, B. Marcotegui, and F. Meyer (2000) A segmentation pyramid for the interactive segmentation of 3-D images and video sequences. Proceedings of the International Symposium of Mathematical Morphology, Palo Alto, California, USA, Kluwer Academic Publishers, 263–272.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Erik Monsen
    • 1
  • Trygve Randen
    • 1
  • Lars Sønneland
    • 1
  • Jan E. Odegard
    • 2
  1. 1.Schlumberger Stavanger ResearchStavangerNorway
  2. 2.CITIRice UniversityHoustonUSA

Personalised recommendations