From 3D Seismic Facies to Reservoir Simulation: An Example From the Grane Field

  • Alexis Carrillat
  • Brice Vallès
Part of the Mathematics in Industry book series (MATHINDUSTRY, volume 7)


A new seismic to simulation workflow is proposed, where the aim is the reduction of the overall turn-around time, from seismic data acquisition to reservoir model building and simulation. To this end, new automated procedures are established: firstly, for discriminating seismic data into three-dimensional seismic facies, and secondly, for building a voxel-based reservoir model.

This chapter is divided into three parts. In the first part, automated three-dimensional seismic facies mapping is discussed, where both the stratigraphic and the structural framework of the seismic data are reflected. The resulting seismic facies are then identified with lithologies by calibration against well data.

In the second part, automated voxel grid extraction for reservoirs is explained. The required input is the voxel size together with the top and bottom horizons delimiting the reservoir extents. The calibrated three-dimensional seismic facies are then used to associate each voxel with porosity and permeability values. This last automated step results in a voxel-based reservoir model.

Finally, in the third part, an application of the new workflow is presented. To this end, a case study for the Grane field is used. The selected simulation scenario models a three-phase reservoir life.


Seismic Data Acoustic Impedance Reservoir Model Reservoir Simulation Seismic Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.K. Addy (1998) Neural network classification method helps seismic interval interpretation. Oil & Gas Journal 96(37), 47–59.Google Scholar
  2. 2.
    F. Aminzadeh, J. Barhen, C.W. Glover, and N.B. Toomarian (2000) Reservoir parameter estimation using a hybrid neural network. Computers & Geosciences 26(8), 869–875.CrossRefGoogle Scholar
  3. 3.
    R.P. Batycky, M.J. Blunt, and M.R. Thiele (1997) A 3d field-scale streamline-based reservoir simulator. SPE Reservoir Engng., Nov. 1997, 246–254.Google Scholar
  4. 4.
    H.G. Borgos, T. Skov, T. Randen, and L. Sønneland (2003) Automated geometry extraction from 3D seismic data. In Expanded Abstr., 73rd Ann. Int. Mtg., Soc. Expl. Geophys., Dallas, USA, 26–31 Oct., 2003, 1541–1544.Google Scholar
  5. 5.
    H.G. Borgos, T. Skov, and L. Sønneland (2004) Automated structural interpretation through classification of seismic horizons. This volume.Google Scholar
  6. 6.
    L.F. Brown and W.L. Fisher (1980) Seismic stratigraphic interpretation and petroleum exploration: continuing education course note series. Chapter 16. American Association of Petroleum Geologists.Google Scholar
  7. 7.
    A. Carrillat, T. Randen, L. Sønneland, and G. Elvebakk (2002) Automated mapping of carbonate mounds using 3D seismic texture attributes. In Expanded Abstr., 72nd Ann. Int. Mtg., Soc. Expl. Geophys., Salt Lake City, USA, 6–11 Oct., 2002, 552–555.Google Scholar
  8. 8.
    A. Carrillat, T. Randen, L. Sønneland, and G. Elvebakk (2002) Stratigraphic mapping of carbonate mounds using 3D texture attributes. In Extended Abstr., 64th Conference & Exhibition, Eur. Ass. Geosc. & Eng., Florence, Italy, 27–30 May, 2002.Google Scholar
  9. 9.
    J. Dayhoff (1990) Neural Network Architectures: An Introduction. Van Nostrand Reinhold, New York.Google Scholar
  10. 10.
    J.M. Van de Sande (1996) Prediction of reservoir parameters from 3D seismic data for the Zechstein 2 carbonate play in the northeast Netherlands. AAPG Studies in Geology No. 42 and SEG Geophysical Developments Series No. 5, P. Weimer and L. Davis (eds.), Tulsa, 1996, 197–204.Google Scholar
  11. 11.
    P.M. Doyen (1988) Porosity from seismic data: a geostatistical approach. Geophysics 53(10), 1263–1275.CrossRefGoogle Scholar
  12. 12.
    C.L. Farmer (2004) Geological modelling and reservoir simulation. This volume.Google Scholar
  13. 13.
    Q.J. Fisher and R.J. Knipe (1998) Fault sealing processes in siliciclastic sediments. Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs, G. Jones, Q.J. Fisher, and R.J. Knipe (eds.), vol. 147 of Geological Society Special Publications, 117–134.Google Scholar
  14. 14.
    K.A. Foxford, J.J. Walsh, J. Watterson, I.R. Garden, S.C. Guscott, and S.D. Burley (1998) Structure and content of the Moab fault zone, Utah, USA, and its implications for fault seal prediction. Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs, G. Jones, Q.J. Fisher, and R.J. Knipe (eds.), Geological Society Special Publications, vol. 147, 87–103.Google Scholar
  15. 15.
    G.H.F. Gardner, L.W. Gardner, and A.R. Gregory (1974) Formation velocity and density-the diagnostic basics for stratigraphic traps. Geophysics 39, 770–780.CrossRefGoogle Scholar
  16. 16.
    P. Goovaerts (1997) Geostatistics for Natural Resources Exploration. Oxford University Press, New York.Google Scholar
  17. 17.
    B.K. Hegstad and H. Omre (2001) Uncertainty in production forecasts based on well observations, seismic data, and production history. SPE 74699, 409–423.Google Scholar
  18. 18.
    M. Huus, D. Duranti, C.G. Guargena, P. Prat, K. Holm, N. Steinsland, B.T. Cronin, A. Hurst, and J. Cartwright (2003) Sandstone intrusions: detection and significance for exploration and production. First Break 21, 33–42.Google Scholar
  19. 19.
    M. Käser and A. Iske (2004) Reservoir flow simulation by adaptive ADER schemes. This volume.Google Scholar
  20. 20.
    A. Kaufman, D. Cohen, and R. Yagel (1993) Volume graphics. Computer 26(7), 51–64.CrossRefGoogle Scholar
  21. 21.
    M. Landrø, H. Hafslund Veire, K. Duffaut, and N. Najjar (2003) Discrimination between pressure and fluid saturation changes from marine multicomponent time-lapse seismic data. Geophysics 68(5), 1592–1599.CrossRefGoogle Scholar
  22. 22.
    G. Mangerud, T. Dreyer, L. Søyseth, O. Martinsen, and A. Ryseth (1999) High-resolution biostratigraphy and sequence development of the Palaeocene succession, Grane field, Norway. Development and Evolution of the Wessex Basin, J.R. Underhill (ed.), vol. 133 of Geological Society, London, 167–184.Google Scholar
  23. 23.
    T. Manzocchi, J.J. Walsh, P. Nell, and G. Yielding (1999) Fault transmissibility multipliers for flow simulation models. Petroleum Geoscience 5, 53–63.Google Scholar
  24. 24.
    G. Mavko, T. Mukerji, and J. Dvorkin (1998) The Rock Physics Handbook. Cambridge University Press.Google Scholar
  25. 25.
    P. Meldahl, R. Heggland, B. Bril, and P. de Groot (1999) The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks: part 1: methodology. In Expanded Abstr., 69th Ann. Int. Mtg., Soc. Expl. Geophys., Houston, USA, 1999.Google Scholar
  26. 26.
    R.M. Jr. Mitchum and P.R. Vail (1977) Seismic stratigraphic interpretation procedure. Seismic Stratigraphy-Applications to Hydrocarbon Exploration, C. E. Payton (ed.), vol. 26, American Association of Petroleum Geologists Memoir, 135–143.Google Scholar
  27. 27.
    R.M. Jr. Mitchum, P.R. Vail, and J.B. Sangree (1977) Stratigraphic interpretation of seismic reflection patterns in depositional sequences. Seismic Stratigraphy-Applications to Hydrocarbon Exploration, C. E. Payton (ed.), vol. 26, American Association of Petroleum Geologists Memoir, 117–133.Google Scholar
  28. 28.
    R.M. Jr. Mitchum, P.R. Vail, and S. Thompson (1977) The depositional sequence as a basic unit for stratigraphic analysis. Seismic Stratigraphy-Applications to Hydrocarbon Exploration, C. E. Payton (ed.), vol. 26, American Association of Petroleum Geologists Memoir, 53–62.Google Scholar
  29. 29.
    E. Monsen, T. Randen, L. Sønneland, and J.E. Odegard (2004) Geological model building: a hierarchical segmentation approach. This volume.Google Scholar
  30. 30.
    H. Pape, C. Clauser, and J. Iffland (1999) Permeability prediction based on fractal pore-space geometry. Geophysics 64(5), 1447–1460.CrossRefGoogle Scholar
  31. 31.
    C.E. Payton, editor (1977) Seismic Stratigraphy-Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, vol. 26.Google Scholar
  32. 32.
    S.I. Pedersen, T. Skov, T. Randen, L. Sønneland (2004) Automatic fault extraction using artificial ants. This volume.Google Scholar
  33. 33.
    D.K. Ponting (1992) Corner point geometry in reservoir simulation. TheMathematics of Oil Recovery, P.R. King (ed.), Clarendon Press, Oxford, 45–65.Google Scholar
  34. 34.
    T. Randen, E. Monsen, A. Abrahamsen, J.O. Hansen, J. Schlaf, and L. Sønneland (2000) Three-dimensional texture attributes for seismic data analysis. In Expanded Abstr., 70th Ann. Int. Mtg., Soc. Expl. Geophys., 2000.Google Scholar
  35. 35.
    T. Randen and L. Sønneland (2004) Atlas of 3D seismic attributes. This volume.Google Scholar
  36. 36.
    S.K. Richardsen and T. Randen (2004) Mapping 3D geo-bodies based on level set and marching methods. This volume.Google Scholar
  37. 37.
    J. Schlaf and T. Randen (2004) Introduction to seismic texture. This volume.Google Scholar
  38. 38.
    R.E. Sheriff (2002) Encyclopedic Dictionary of Applied Geophysics. Fourth edition, Geophysical References, vol. 13, Society of Exploration Geophysicists, Tulsa, USA.Google Scholar
  39. 39.
    L. Sønneland (1994) Volume reflection spectral analysis. Technical report, Schlumberger Geco-Prakla.Google Scholar
  40. 40.
    L. Sønneland, P.O. Tennebø, T. Gehrmann, and O. Yrke (1994) 3D modelbased Bayesian classification. In Expanded Abstr., 64th Ann. Int. Mtg., Soc. Expl. Geophys., 510–511.Google Scholar
  41. 41.
    M.T. Taner, F. Koehler, and R.E. Sheriff (1979) Complex seismic trace analysis. Geophysics 44(6), 1041–1063.CrossRefGoogle Scholar
  42. 42.
    P.O. Tennebø, H.H. Veire, L. Sønneland, C. Signer, and B. Reymond (1998) Inversion of 4D seismic with best feasible approximation. Society of Exploration Geophysicists, expanded abstract, New Orleans, USA, 52–53.Google Scholar
  43. 43.
    J.F. Thompson, B.K. Soni, and N.P. Weatherill (1999) Handbook of Grid Generation. CRC Press, Boca Raton.Google Scholar
  44. 44.
    G. Yielding, G. Freeman, and B. Needham (1997) Quantitative fault seal prediction. American Association of Petroleum Geologists Bulletin 81, 897–917.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Alexis Carrillat
    • 1
  • Brice Vallès
    • 1
  1. 1.Schlumberger Stavanger ResearchStavangerNorway

Personalised recommendations