Skip to main content

Thermal and Geometrical Effects on Bulk Permittivity of Porous Mixtures Containing Bound Water

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 16: 574–582

    Article  Google Scholar 

  2. Sihvola A (1999) Electromagnetic mixing formulas and applications. Michael Faraday House, Stevenage, Herts, SGI 2AY, UK

    Google Scholar 

  3. Dasberg S, Dalton FN (1985) Time domain reflectometry field measurements of soil water content and electrical conductivity. Soil Sci. Soc. Am. J. 49: 293–297

    Article  Google Scholar 

  4. Sihvola A, Lindell IV (1990) Polarizability and effective permittivity of layered and continuously inhomogeneous dielectric ellipsoids. J. Electromagn. Waves Appl. 4: 1–26

    Article  Google Scholar 

  5. Jones SB, Friedman SP (2000) Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles. Water Resour. Res. 36: 2821–2833

    Article  Google Scholar 

  6. Kraszewski AW, Nelson SO (1996) In: Kraszewski A (ed) Microwave Aquametry. IEEE Press, NY, pp 177–203

    Google Scholar 

  7. Kelley JM, Stenoien JO, Isbell DE (1953) Wave-guide measurements in the microwave region on metal powders suspended in paraffin wax. J. Appl. Phys. 24: 258–262

    Article  Google Scholar 

  8. Sillers RW (1936) The properties of a dielectric containing semi-conducting particles of various shapes. J. Inst. E.ect. Eng. 80: 378–394

    Google Scholar 

  9. Friedman SP, Robinson DA (2002) Particle shape characterization using angle of repose mesurements for predicting the effective permittivity and electrical conductivity of saturated granular media. Water Resour. Res. 38

    Google Scholar 

  10. Hillel D (1998) Environmental Soil Physics. Academic Press, San Diego

    Google Scholar 

  11. Brooker DB, Bakker-Arkema FW, Hall CW (1992) Drying and Storage of Grains and Oilseeds. Van Nostrand Reinhold, New York

    Google Scholar 

  12. Lamm G, Pack GR (1997) Local dielectric constants and Poisson-Boltzmann calculations of DNA counted on distributions. Int. J. Quant. Chem. 65: 1087–1093

    Article  Google Scholar 

  13. Thorp JM (1959) The dielectric behaviour of vapours adsorbed on porous solids. Trans. Faraday Soc. 55: 442–454

    Article  Google Scholar 

  14. Bockris JOM, Devanathan MAV, Muller K (1963) On the structure of charged interfaces. Proc. Roy. Soc. (London) A274: 55–79

    Google Scholar 

  15. Olhoeft GR (1981) In: Roy RF (ed) Physical Properties of Rocks and Minerals (CINDAS Data Series on Material Properties), vol II. McGraw-Hill, New York, pp 257–328

    Google Scholar 

  16. Nelson S, Lindroth D, Blake R (1989) Dielectric properties of selected and purified minerals at 1 to 22 GHz. J. Microwave Power Electromagnetic Energy. 24: 213–220

    Google Scholar 

  17. Booth F (1951) The dielectric constant of water and the saturation effect. J. Chem. Phys. 19: 391–394

    Article  MathSciNet  Google Scholar 

  18. Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003) A Review of Advances in Dielectric and Electrical Conductivity Measurement in Soils Using Time Domain Reflectometry. Vadose Zone J 2: 444–475

    Article  Google Scholar 

  19. Oliver BM, Cage JM (1971) Electronic measurements and instrumentation. McGraw-Hill, New York

    Google Scholar 

  20. Weast RC (1986) CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL

    Google Scholar 

  21. Or D, Wraith JM (1999) Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: A physical model. Water Resour. Res. 35: 371–383

    Article  Google Scholar 

  22. Debye P (1929) Polar Molecules. Dover, Mineola, New York

    MATH  Google Scholar 

  23. Landau LD, Lifshitz EM (1960) Electrodynamics of Continuous Media. Permagon Press, New York

    MATH  Google Scholar 

  24. Schaap MG, deLange L, Heimovaara TJ (1996) TDR calibration of organic forest floor media. Soil Technology 11: 205–217

    Article  Google Scholar 

  25. Jones SB, Or D (2002) Surface area, geometrical and configurational effects on permittivity of porous media. J. Non-Crystalline Solids. 305: 247–254

    Article  Google Scholar 

  26. Dirksen C, Dasberg S (1993) Improved calibration of time domain reflectometry soil water content measurements. Soil Sci. Soc. Am. J. 57: 660–667

    Article  Google Scholar 

  27. Ndife MK, Sumnu G, Bayindirli L (1998) Dielectric properties of six different species of starch at 2450 MHz. Food Research International. 31: 43–52

    Article  Google Scholar 

  28. Jones RN, Bussey HE, Little WE, Mezker RF (1978). National Bureau of Standards, Boulder

    Google Scholar 

  29. Carter DL, Mortland MM, Kemper WE (1986) In: Klute A (ed) Methods of soil analysis, Part 1, Physical and mineralogical methods. ASA, Madison, WI, pp 413–423

    Google Scholar 

  30. Robinson DA, Cooper JD, Gardner CMK (2002) Modelling the relative permittivity of soils using soil hygroscopic water content. J. Hydrology. 255: 39–49

    Article  Google Scholar 

  31. Leung HKH (1975) Capacity and force of water binding by carbohydrates and proteins as determined by nuclear magnetic resonance, Ph.D., University of Illinois at Urbana-Champaign

    Google Scholar 

  32. Leung HK, Steinberg MP, Wei LS, Nelson AI (1976) Water binding of macromolecules determined by pulsed NMR. J. Food Sci. 41: 297–300

    Google Scholar 

  33. Ryden BE (1992) In: Lund LJ (ed) Indirect methods for estimating the hydraulic properties of unsaturated soils. University of California Riverside, Riverside, CA, pp 693–706

    Google Scholar 

  34. Robinson RA, Stokes RH (1959) Electrolyte Solutions. Butterworths, London

    Google Scholar 

  35. Anderson DM, Low PF (1958) The density of water adsorbed by lithium-sodium-and potassium-bentonite. Soil Sci. Soc. Am. Proc. 22: 99–103

    Article  Google Scholar 

  36. Low BW, Richards FM (1954) Measurements of the density, composition and related unit cell dimensions of some protein crystals. Am. Chem. Soc. J. 76: 2511–2518

    Article  Google Scholar 

  37. Israelachvili JN (1992) Intermolecular and surface forces. Academic Press, San Diego

    Google Scholar 

  38. Gur-Arieh C, Nelson AI, Steinberg MP (1967) Studies on the density of water adsorbed on low-protein fraction of flour. J. Food Sci. 32: 442–445

    Google Scholar 

  39. Mackenzie RC (1958) Density of water sorbed on monmorillonite. Nature. 181: 334

    Article  Google Scholar 

  40. Schoen M, Diestler DJ, Cushman JH (1987) Fluids in micropores. I. Structures of a simple classical fluid in a slit-pore. J. Chem. Phys. 87: 5464–5476

    Article  Google Scholar 

  41. Agmon N (1996) Tetrahedral displacement: The molecular mechanism behind the Debye relaxation in water. J. Phys. Chem. 100: 1072–1080

    Article  Google Scholar 

  42. Ratkovic S, Pissis P (1997) Water binding to biopolymers in different cereals and legumes: Proton NMR relaxation, dielectric and water imbibition studies. J. Material Sci. 32: 3061–3068

    Article  Google Scholar 

  43. Konsta AA, Pissis P, Kanapitsas A, Ratkovic S (1996) Dielectric and conductivity studies of the hydration mechanisms in plant seeds. Biophysical Journal. 70: 1485–1493

    Google Scholar 

  44. Leschansky YI, Lebedeva GN, Shumilin VD (1971) Electrical parameters of sandy and loamy grounds in the range of centimeter, decimeter, and meter wavelength. Izv. Vyss. Ucheb. Zaved. Radiofiz. 14: 562–569

    Google Scholar 

  45. Thies-Weesie DME, Philipse AP, Kluijtmans SGIM (1995) Preparation of sterically stabilized silica-hematite ellipsoids: Sedimentation, permeation, and packing properties of prolate colloids. J. Colloid Interface Sci. 174: 211–223

    Article  Google Scholar 

  46. Cumberland DJ, Crawford R (1987) In: Allen T (ed) Handbook of Powder Technology, vol 6. Elsevier, Amsterdam

    Google Scholar 

  47. Sokhansanj S, Lang W (1996) Prediction of kernel and bulk volume of wheat and canola during adsorption and desorption. J. Agric. Engng. Res. 63: 129–136

    Article  Google Scholar 

  48. Milewski JV (1978) The combined packing of rods and spheres in reinforcing plastics. Ind. Eng. Chem. Prod. Res. Dev. 17

    Google Scholar 

  49. Mohsenin NN (1970) Physical properties of plant and animal materials: Structure, physical characteristics and mechanical properties. Gordon and Breach Science Publishers, New York

    Google Scholar 

  50. Sokhansanj S, Falacinski AA, Sosulski FW, Jayas DS, Tang J (1990) Resistance of bulk lentils to airflow. Trans. ASAE. 33: 1281–1285

    Google Scholar 

  51. Cherkaeva E, Golden KM (1998) Inverse bounds for microstructural parameters of composite media derived from complex permittivity measurements. Waves in Random Media 8: 437–450

    Article  MathSciNet  MATH  Google Scholar 

  52. Trabelsi S, Nelson SO (1998) Density-independent function for on-line microwave moisture meters: a general discussion. Meas. Sci. and Tech. 9: 570–578

    Article  Google Scholar 

  53. Nelson SO (1979) RF and microwave dielectric properties of shelled, yellow-dent field corn. Trans. ASAE. 22: 1451–1457

    Google Scholar 

  54. Brusewitz GH (1975) Density of rewetted high moisture grains. Trans. ASAE 18: 935–938

    Google Scholar 

  55. Leopold AC (1983) Volumetric components of seed imbibition. Plant Physiol. 73: 677

    Article  Google Scholar 

  56. Friedman SP (1998) A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media. Water Resour. Res. 34: 2949–2961

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jones, S.B., Or, D. (2005). Thermal and Geometrical Effects on Bulk Permittivity of Porous Mixtures Containing Bound Water. In: Kupfer, K. (eds) Electromagnetic Aquametry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26491-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-26491-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22222-4

  • Online ISBN: 978-3-540-26491-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics