Skip to main content

Effect of Quantum Confinement on Electrons and Phonons in Semiconductors

  • Chapter
Fundamentals of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

Summary

In this chapter we studied the effect of quantum confinement on electrons and phonons in semiconductors in synthetic layered structures, known as quantum wells and superlattices, that are usually fabricated with the technique of molecular beam epitaxy. Due to limited space, we have considered mainly the most studied systems composed of lattice-matched GaAs, AlAs and their alloys. However, this system is versatile enough to demonstrate much of the physics involved, such as formation of electronic subbands and minibands, the confinement of optical phonons, folding of acoustic phonons and the introduction of interface modes. We also illustrated the effect of confinement on the transport properties of carriers in these materials by studying the phenomena of resonant tunneling and the integral quantum Hall effect. The fractional quantum Hall effect has become one of the most exciting areas of current research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 9

  1. L. Esaki, R. Tsu: Superlattice and negative differential conductivity in semiconductors. IBM J. Res. Devel. 14, 61–65 (1970)

    Article  Google Scholar 

  2. K. K. Tiong, P.M. Amirtharaj, F. H. Pollak, D.E. Aspnes: Effects of As+ ion implantation on the Raman spectra of GaAs: “Spatial correlation” interpretation. Appl. Phys. Lett. 44, 122–124 (1984) N. Tomassini, A. d'Andrea, R. del Sole, H. Tuffigo-Ulmer, R. T. Cox: Center of mass quantization of excitons in CdTe/Cd1−xZnxTe quantum wells. Phys. Rev. B. 51, 5005–5012 (1995)

    Article  Google Scholar 

  3. M. Asada, Y. Migamoto, Y. Suematsu: Gain and the threshold of three dimensional quantum-box lasers. IEEE J. QE-22, 1915–1921 (1986)

    Article  Google Scholar 

  4. C. Weisbuch, B. Vinter: Quantum Semiconductor Structures, Fundamentals and Applications (Academic, San Diego, CA 1991)

    Google Scholar 

  5. J. Singh: Physics of Semiconductors and their Heterostructures (McGraw-Hill, New York 1993) p. 524

    Google Scholar 

  6. R. Dingle, W. Wiegmann, C. H. Henry: Quantum states of confined carriers in very thin AlxGa1−xAs-GaAs-AlxGa1−xAs heterostructures. Phys. Rev. Lett. 33, 827–830 (1974)

    Article  Google Scholar 

  7. M.H. Meynadier, C. Delalande, G. Bastard, M. Voss. F. Alexandre, J.L. Lievin: Size quantization and band-offset determination in GaAs-GaAlAs separate confinement heterostructure. Phys. Rev. B 31, 5539–5542 (1985)

    Article  Google Scholar 

  8. M.S. Skolnick, P.R. Tapster, S. J. Bass, A. D. Pitt, N. Apsley, S.P. Aldredy: Investigation of InGaAs-InP quantum wells by optical spectroscopy. Semicond. Sci. Technol. 1, 29–40 (1986)

    Article  Google Scholar 

  9. F. Capasso: Band-gap engineering: From physics and materials to new semiconductor devices. Science 235, 172–176 (1987)

    Article  Google Scholar 

  10. H. Kroemer: Theory of a wide gap emitter for transistors. Proc. IRE 45, 1535 (1957); A proposed class of heterojunction injection lasers. Proc. IEEE 51, 1782 (1963); a general review on heterojunctions: Problems in the theory of heterojunction discontinuities Crit. Rev. SSC 5, 555 (1975).

    Article  Google Scholar 

  11. Zh. I. Alferov and D. Z. Gabruzov: Recombination radiation spectrum of GaAs with current excitation via p-n heterojunctions of GaP-GaAs. [English translation] Sov. Phys. Solid State 7, 1919–1921 (1966).

    Google Scholar 

  12. Zh. Alferov, V.M. Andreev, V. I. Korol'kov, E.L. Portnoi, D.N. Tret'yakov: Coherent Radiation of Epitaxial Heterojunction Structures in the AlAs-GaAs system. [English translation] Sov.Phys. Semiconductors 2, 1289 (1969).

    Google Scholar 

  13. T.P. Pearsall (ed.): Strain-Layer Superlattices: Physics, Semiconductors and Semimetals, Vol. 32 (Academic, New York, NY 1990)

    Google Scholar 

  14. L. Esaki: Semiconductor superlattices and quantum wells, in Proc. 17th Int'l Conf. on The Physics of Semiconductors, ed. by J. Chadi, W. A. Harrison (Springer, New York, Berlin 1984) pp. 473–483

    Google Scholar 

  15. K. Ploog, G.H. Döhler: Compositional and doping superlattices in III–V semiconductors. Adv. Phys. 32, 285–359 (1983)

    Article  Google Scholar 

  16. J. Spitzer, T. Ruf, W. Dondl, R. Schorer, G. Abstreiter, E.E. Haller: Optical Phonons in Isotopic 70Ge74Ge Superlattices. Phys. Rev. Lett. 72, 1565–1568 (1994)

    Article  Google Scholar 

  17. J. Ihm: Effect of the layer thickness on the electronic character in GaAs-AlAs superlattices. Appl. Phys. Lett. 50, 1068–1070 (1987)

    Article  Google Scholar 

  18. S. Gopalan, N. E. Christensen, M. Cardona: Band edge states in short period (GaAs)m(AlAs)m superlattices. Phys. Rev. B 39, 5165–5174 (1989)

    Article  Google Scholar 

  19. L.I. Schiff: Quantum Mechanics (McGraw-Hill, New York 1955)

    Google Scholar 

  20. G. Bastard: Superlattice band structure in the envelope-function approximation. Phys. Rev. 24, 5693–5697 (1981)

    Article  Google Scholar 

  21. G. Bastard, J. A. Brum, R. Ferreira: Electronic states in semiconductor heterostructures. Solid State Physics 4, 229–415 (Academic, San Diego, CA 1991)

    Google Scholar 

  22. E.L. Ivchenko, G. Pikus: Superlattices and Other Heterostructures: Symmetry and Optical Phenomena, Springer Ser. Solid-State Sci., Vol. 110 (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  23. G. Bastard, J. A. Brum: Electronic states in semiconductor heterostructures. IEEE J. QE-22, 1625–1644 (1986)

    Article  Google Scholar 

  24. J.C. Hensel, G. Feher: Cyclotron resonance experiment in uniaxially stressed silicon: Valence band inverse mass parameters and deformation potentials. Phys. Rev. 129, 1041–1062 (1963)

    Article  Google Scholar 

  25. L. Liboff: Introductory Quantum Mechanics (Addison-Wesley, Reading, MA 1980) pp. 267–279

    Google Scholar 

  26. L. Esaki: A perspective in superlattice development, in Symp. on Recent Topics in Semiconductor Physics (Prof. Y. Uemura's Festschrift) (World Scientific, Singapore 1983) pp. 1–71

    Google Scholar 

  27. Y.C. Chang, J.N. Schulman: Interband optical transitions in GaAs-Ga1−xAlxAs and InAs-GaSb superlattices. Phys. Rev. B 31, 2069–2079 (1985)

    Article  Google Scholar 

  28. R. Dingle: Optical properties of semiconductor superlattices, in Proc. 13th Int'l Conf. on the Physics of Semiconductors, ed. by F.G. Fumi (Tipografia Marves, Rome 1976) pp. 965–974

    Google Scholar 

  29. M. Cardona, N. E. Christensen: Heterostructure band offsets in semiconductors. Phys. Rev. B 35, 6182–6194 (1987)

    Article  Google Scholar 

  30. J.A. Kash, M. Zachau, M. A. Tischler: Anisotropic valence bands in quantum wells: Quantitative comparison of theory and experiment. Phys. Rev. Lett. 69, 2260–2263 (1992)

    Article  Google Scholar 

  31. G. Fasol, W. Hackenberg, H. P. Hughes, K. Ploog, E. Bauser, H. Kano: Continous-wave spectroscopy of femtosecond carrier scattering in GaAs. Phys. Rev. B 41, 1461–1478 (1990)

    Article  Google Scholar 

  32. A. Pinczuk, G. Abstreiter: Spectroscopy of free carrier excitations in semiconductor quantum wells, in Light Scattering in Solids V, ed. by M. Cardona, G. Güntherodt, Topics Appl. Phys., Vol. 66 (Springer, Berlin, Heidelberg 1989) pp. 153–211

    Chapter  Google Scholar 

  33. P. Giannozzi, S. R. Gironcoli, P. Pavone, S. Baroni: Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231–7242 (1991)

    Article  Google Scholar 

  34. S.M. Rytov: Acoustic properties of a thinly laminated medium. Sov. Phys. — Acoust. 2, 68–80 (1956)

    Google Scholar 

  35. B. Jusserand, M. Cardona: Raman spectroscopy of vibrations in superlattices, in Light Scattering in Solids V, ed. by M. Cardona, G. Güntherodt, Topics Appl. Phys., Vol. 66 (Springer, Berlin, Heidelberg 1989) Chap. 3

    Google Scholar 

  36. J. Menéndez: Phonons in GaAs-AlxGa1−xAs superlattices. J. Luminesc. 44, 285–314 (1989)

    Article  Google Scholar 

  37. P. Molinàs-Mata, M. Cardona: Planar force-constant models and internal strain parameter of Ge and Si. Phys. Rev. B 43, 9959–9961 (1991)

    Article  Google Scholar 

  38. R.A. Ghanbari, J.D. White, G. Fasol, C. J. Gibbings, C.G. Tuppen: Phonon frequencies for Si-Ge strained-layer superlattices calculated in a three-dimensional model. Phys. Rev. B 42, 7033–7041 (1990)

    Article  Google Scholar 

  39. W. Richter, D. Strauch: Lattice dynamics of GaAs/AlAs superlattices. Solid-State Commun. 64, 867–872 (1987)

    Article  Google Scholar 

  40. E. Molinari, A. Fasolino, K. Kunc: Superlattice effects on confined phonons. Phys. Rev. Lett. 56, 1751 (1986)

    Article  Google Scholar 

  41. R. Fuchs, K.L. Kliewer: Optical modes of vibration in an ionic crystal slab. Phys. Rev. A 140, 2076–2088 (1965)

    Article  Google Scholar 

  42. M. Nakayama, M. Ishida, N. Sano: Raman scattering by interface-phonon polaritons in GaAs-AlAs heterostructures. Phys. Rev. B 38, 6348–6351 (1988)

    Article  Google Scholar 

  43. R. Merlin, C. Colvard, M.V. Klein, H. Morkoc, A.Y. Cho, A.C. Gossard: Raman scattering in superlattices: Anisotropy of polar phonons. Appl. Phys. Lett. 36, 43–45 (1980)

    Article  Google Scholar 

  44. C. Trallero-Giner, F. GarcÍa-Moliner, V.R. Velasco, M. Cardona: Analysis of the phenomenological models for long-wavelength polar optical modes in semiconductor layered systems. Phys. Rev. B 45, 11944–11948 (1992)

    Article  Google Scholar 

  45. Z.V. Popović, M. Cardona, E. Richter, D. Strauch, L. Tapfer, K. Ploog: Phonons in GaAs/AlAs superlattices grown along the (111) direction. Phys. Rev. B 41, 5904–5913 (1990)

    Article  Google Scholar 

  46. M.P. Chamberlain, M. Cardona, B. K. Ridley: Optical modes in GaAs/AlAs superlattices. Phys. Rev. B 48, 14356–14364 (1993)

    Article  Google Scholar 

  47. M. Zunke, R. Schorer, G. Abstreiter, W. Klein, G. Weimann, M. P. Chamberlain: Angular dispersion of confined optical phonons in GaAs/AlAs superlatices studied by micro-Raman spectroscopy. Solid State Commun. 93, 847–851 (1995)

    Article  Google Scholar 

  48. G. Scarmarcio, L. Tapfer, W. König, A. Fischer, K. Ploog, E. Molinari, S. Baroni, P. Giannozzi, S. de Gironcoli: Infrared reflectivity by transverse-optical phonons in (GaAs)m/(AlAs)n ultrathin-layer superlattices. Phys. Rev. B 43, 14754–14757 (1991)

    Article  Google Scholar 

  49. E. Jahne, A. Röseler, K. Ploog: Infrared reflectance and ellipsometric studies of GaAs/AlAs superlattices. Superlattices Microstruct. 9, 219–222 (1991)

    Article  Google Scholar 

  50. Yu. Pusep, A. Milekhin, A. Poropov: FTIR spectroscopy of (GaAs)n/(AlAs)m superlattices. Superlattices Microstruct. 13, 115–123 (1992)

    Article  Google Scholar 

  51. M. Krieger, H. Sigg: Zone-edge gap in the folded acoustic phonon dispersion of an AlAs-GaAs semiconductor superlattice, in The Physics of Semiconductors, ed. by J. Lockwood (World Scientific, Singapore 1995) pp. 959–962

    Google Scholar 

  52. C. Colvard, T. A. Gant, M.V. Klein, R. Merlin, R. Fischer, H. Morkoc, A.C. Gossard: Folded acoustic phonons and quantized optic phonons in (GaAl)As superlattices. Phys. Rev. B 31, 2080–2091 (1985)

    Article  Google Scholar 

  53. J. He, B. Djafari Rouhani, J. Sapriel: Theory of light scattering by longitudinalacoustic phonons in superlattices. Phys. Rev. B 37, 4086–4098 (1988)

    Article  Google Scholar 

  54. J. He, J. Sapriel, H. Brugger: Semiconductor photoelastic constants measured by light scattering in superlattices. Phys. Rev. B 39, 5919–5923 (1989)

    Article  Google Scholar 

  55. J. Spitzer, Z.V. Popovic, T. Ruf, M. Cardona, R. Nötzel, K. Ploog: Folded acoustic phonons in GaAs/AlAs superlattices grown on non-(100)-oriented surface. Solid State Electron. 37, 753–756 (1994)

    Article  Google Scholar 

  56. T. Ruf, J. Spitzer, V. F. Sapega, V. I. Belitsky, M. Cardona, K. Ploog: Interface roughness and homogeneous linewidths in quantum wells and superlattices studies by resonant acoustic-phonon Raman scattering. Phys. Rev. B 50, 1792–1806 (1994)

    Article  Google Scholar 

  57. J.E. Zucker, A. Pinczuk, D. S. Chemla, A.C. Gossard, W. Wiegmann: Optical vibrational modes and electron-phonon interaction in GaAs quantum wells. Phys. Rev. Lett. 53, 1280–1283 (1984)

    Article  Google Scholar 

  58. A. Fainstein, P. Etchegoin, M. P. Chamberlain, M. Cardona, K. Tötemeyer, K. Eberl: Selection rules and dispersion of GaAs/AlAs multiple quantum well optical phonons studied by Raman scattering in right angle, forward and backscattering in-plane geometries. Phys. Rev. B 51, 14448–14458 (1995)

    Article  Google Scholar 

  59. A.J. Shields, M. P. Chamberlain, M. Cardona, K. Eberl: Raman scattering due to interface optical phonons in GaAs/AlAs multiple quantum wells. Phys. Rev. B 51, 17728–17739 (1995)

    Article  Google Scholar 

  60. A.K. Sood, J. Menéndez, M. Cardona, K. Ploog: Interface vibrational modes in GaAs-AlAs superlattices. Phys. Rev. Lett. 54, 2115–2118 (1985)

    Article  Google Scholar 

  61. K. Huang, B. Zhu: Dielectric continuum models and Fröhlich interaction in superlattices. Phys. Rev. B 38, 13377–13386 (1988)

    Article  Google Scholar 

  62. H. Rücker, E. Molinari, P. Lugli: Microscopic calculation of the electronphonon interaction in quantum wells. Phys. Rev. B 45, 6747–6756 (1992)

    Article  Google Scholar 

  63. S. Rudin, T. Reinecke: Electron-LO-phonon scattering rates in semiconductor quantum wells. Phys. Rev. B 41, 7713–7717 (1991)

    Article  Google Scholar 

  64. K.T. Tsen, K. R. Wald, T. Ruf, P.Y. Yu, H. Morkoc: Electron-optical phonon interactions in ultrathin multiple quantum wells. Phys. Rev. Lett. 67, 2557–2560 (1991)

    Article  Google Scholar 

  65. L. Esaki: New phenomenon in narrow germanium p-n junctions. Phys. Rev. 109, 603–604 (1958)

    Article  Google Scholar 

  66. R. Tsu, L. Esaki: Tunneling in a finite superlattice. Appl. Phys. Lett. 22, 562–564 (1973); erratum 43, 9288 (1991)

    Article  Google Scholar 

  67. T.C. L.G. Sollner, W.D. Goodhue, P.E. Tannenwald, C.D. Parker, D.D. Peck: Resonant tunneling through quantum well at frequencies up to 2.5 THz. Appl. Phys. Lett. 43, 588–590 (1983)

    Article  Google Scholar 

  68. A. Silbille, J. F. Palmier, H. Wang, F. Mollot: Observation of Esaki-Tsu negative differential velocity in GaAs/AlAs superlattices. Phys. Rev. Lett. 64, 52–55 (1990)

    Article  Google Scholar 

  69. J.P. Palmier: Miniband transport and resonant tunneling in superlattices, in Resonant Tunneling in Semiconductors, ed. by. L.L. Chang (Plenum, New York 1991) pp. 361–375 E. E. Mendez, W. I. Wang, B. Ricco, L. Esaki: Resonant tunneling of holes in GaAs-GaAlAs superlattices. Appl. Phys. Lett. 47, 415–417 (1985). For this and related work Mendez was awarded the Prince of Asturias Prize, 1998

    Chapter  Google Scholar 

  70. E. Merzbacher: Quantum Mechanics (Wiley, New York 1961) pp. 94–97

    Google Scholar 

  71. D.Z.-Y. Ting, S.K. Kirby, T.C. McGill: Interface roughness effects in resonant tunneling structures. Appl. Phys. Lett. 64, 2004–2006 (1994)

    Article  Google Scholar 

  72. T.P. E. Broekaert, W. Lee, C.G. Fonstad: Pseudomorphic In0.53Ga0.47As/AlAs/ InAs resonant tunneling diodes with peak-to-valley current ratios of 30 at room temperature. Appl. Phys. Lett. 53, 1545–1547 (1988)

    Article  Google Scholar 

  73. K. von Klitzing, G. Dorda, M. Pepper: New method for high-accuracy determination of the fine-structure constant based on quantum Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980)

    Article  Google Scholar 

  74. D.C. Tsui, H. L. Störmer, A.C. Gossard: Two dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 45, 1559–1562 (1982)

    Article  Google Scholar 

  75. L.D. Landau: Diamagnestism of metals (in German). Z. Physik. 64, 629–637 (1930)

    Article  Google Scholar 

  76. L.D. Landau, E.N. Lifshitz: Quantum Mechanics, 3rd edn. (Pergamon, Oxford 1977)

    Google Scholar 

  77. J.M. Ziman: Principles of the Theory of Solids, 2nd edn. (Cambridge Univ. Press, Cambridge 1972) pp. 313–326

    Book  Google Scholar 

  78. M. Brodsky (ed.): Amorphous Semiconductors, 2nd edn., Topics Appl. Phys, Vol. 36 (Springer, Berlin, Heidelberg 1985)

    Google Scholar 

  79. J. Tauc: Amorphous and Liquid Semiconductors (Plenum, New York 1974)

    Book  Google Scholar 

  80. H. Störmer: Fractional Quantum Hall effect today, Solid State Commun. 107, 617–622 (1998)

    Article  Google Scholar 

  81. S.M. Girvin: Exotic quantum order in two-dimensional systems, Solid State Commun. 107, 623–628 (1998)

    Article  Google Scholar 

  82. D.C. Tsui, H. Störmer, A.C. Gossard: Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    Article  Google Scholar 

  83. R.B. Laughlin: Anomalous QHE: An incompressible fluid with fractionally charged excitations. Phys. Rev. Lett. 50, 1395–1398 (1983)

    Article  Google Scholar 

  84. R. Loudon: Raman effect in crystals. Adv. Phys. 13, 423–482 (1964); erratum ibid. 14, 621 (1965)

    Article  Google Scholar 

Growth of Quantum Wells and Superlattices

  • Hermann M. A., H. Sitter: Molecular Beam Epitaxy, 2nd. edn., Springer Ser. Mater. Sci., Vol. 7 (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  • Milnes A.G., D.L. Feucht: Heterojunctions and Metal-Semiconductor Junctions (Academic, NY, 1972)

    Google Scholar 

  • Panish M.B., H. Temkin: Gas Source Molecular Beam Epitaxy, Springer Ser. Mater. Sci., Vol. 26 (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  • Ploog K.: Formation of semiconductor interfaces during molecular beam epitaxy, in Semiconductor Interfaces: Formation and Properties, ed. by G. LeLay, J. Denien, N. Boccara (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  • Stradling R. A., P.C. Klipstein (eds.): Growth and Characterization of Semiconductors (Hilger, Bristol, UK 1990)

    Google Scholar 

  • Wang S.: Fundamentals of Semiconductor Theory and Device Physics, (Prentice Hall, Englewood Cliffs, New Jersey, 1989)

    Google Scholar 

Properties of Quantum Wells and Superlattices

  • Ando T., Y. Arakawa, K. Furuya, S. Komiyama, H. Nakashima (eds.): Mesoscopic Physics and Electronics, NanoScience and Technology (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  • Dekker A. J.: Solid State Physics (Prentice Hall, Englewood Cliffs, NJ 1957) p. 244

    Google Scholar 

  • Ehrenreich H., D. Turnbull (eds.): Semiconductor Heterostructures and Nanostructures Adv. Res. Appl., Vol. 44 (Academic, San Diego, CA 1991)

    Google Scholar 

  • Ivchenko E. L., G. Pikus: Superlattices and Other Heterostructures: Symmetry and Other Optical Phenomena, Springer Ser. Solid-State Sci., Vol. 110 (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  • Jaros M.: Superlattices of Semiconductor Microstructures (Clarendon, Oxford 1985)

    Google Scholar 

  • Jusserand B., M. Cardona: Raman spectroscopy of vibrations in superlattices, in Light Scattering in Solids V, ed. by M. Cardona, G. Güntherodt, Topics Appl. Phys., Vol. 66 (Springer, Berlin, Heidelberg 1989) pp. 49–152

    Chapter  Google Scholar 

  • Kroemer H.: Theory of heterojunction: A critical review, in Molecular Beam Epitaxy and Heterostructures, ed. by L. L. Chang, K. Ploog (Nijhoff, Dordrecht 1985) pp. 331–379

    Chapter  Google Scholar 

  • Menéndez J.: Phonons in GaAs-AlxGa1−xAs superlattices. J. Luminesc. 44, 285–314 (1989)

    Article  Google Scholar 

  • Pearsall, T. P. (ed.): Strain-Layer Superlattices: Physics, Semiconductors and Semimetals, Vol. 32 (Academic, Orlando, FL 1990)

    Google Scholar 

  • Pinczuk A., G. Abstreiter: Spectroscopy of free carriers excitations in semiconductor quantum wells, in Light Scattering in Solids V, ed. by M. Cardona, G. Güntherod, Topics Appl. Phys., Vol. 66 (Springer, Berlin, Heidelberg 1989) Chap. 4, pp. 153–211

    Chapter  Google Scholar 

  • Sapriel J., B. Djafari Rouani: Vibrations in superlattices. Surf. Sci. Rept. 10, 189–275 (1989)

    Article  Google Scholar 

  • Singh J.: Physics of Semiconductors and their Heterostructures (McGraw-Hill, New York 1993)

    Google Scholar 

  • Wang S.: Fundamentals of Semiconductor Theory and Device Physics (Prentice Hall, Englewood Cliffs, NJ 1989)

    Google Scholar 

  • Weisbuch C., B. Vinter: Quantum Semiconductor Structures, Fundamentals and Applications (Academic, San Diego, CA 1991)

    Google Scholar 

Quantum Hall Effect

  • Chakraborty T., P. Pietiläinen: The Quantum Hall Effects — Fractional and Integral, 2nd edn., Springer Ser. Solid-State Sci., Vol. 85 (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  • Jain, J. K.: The composite fermion: a quantum particle and its quantum fluids, Physics today, April 2000, pp. 39–45

    Google Scholar 

  • Janssen M., O. Viehweger, U. Fastenrath, J. Hajdu: Introduction to the Theory of the Integer Quantum Hall Effect (VCH, Weinheim 1994)

    Google Scholar 

  • McDonald A. H. (ed.): Quantum Hall Effect: A Perspective (Kluwer, Boston 1989)

    Google Scholar 

  • Prange R. E., S. M. Girvin (eds.): The Quantum Hall Effect (Springer, New York, Berlin 1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, P.Y., Cardona, M. (1996). Effect of Quantum Confinement on Electrons and Phonons in Semiconductors. In: Fundamentals of Semiconductors. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26475-2_9

Download citation

  • DOI: https://doi.org/10.1007/3-540-26475-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25470-6

  • Online ISBN: 978-3-540-26475-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics