Skip to main content

Electronic Band Structures

  • Chapter
Fundamentals of Semiconductors

Part of the book series: Graduate Texts in Physics ((GTP))

Summary

A semiconductor sample contains a very large number of atoms. Hence a quantitative quantum mechanical calculation of its physical properties constitutes a rather formidable task. This task can be enormously simplified by bringing into play the symmetry properties of the crystal lattice, i. e., by using group theory. We have shown how wave functions of electrons and vibrational modes (phonons) can be classified according to their behavior under symmetry operations. These classifications involve irreducible representations of the group of symmetry operations. The translational symmetry of crystals led us to Bloch’s theorem and the introduction of Bloch functions for the electrons. We have learnt that their eigenfunctions can be indexed by wave vectors (Bloch vectors) which can be confined to a portion of the reciprocal space called the first Brillouin zone. Similarly, their energy eigenvalues can be represented as functions of wave vectors inside the first Brillouin zone, the so-called electron energy bands. We have reviewed the following main methods for calculating energy bands of semiconductors: the empirical pseudopotential method, the tight-binding or linear combination of atomic orbitals (LCAO) method and the k·p method. We have performed simplified versions of these calculations in order to illustrate the main features of the energy bands in diamond- and zinc-blende-type semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 2

  1. Quantum Theory of Real Materials (eds. Chelikowsky, J.R., Louie, S.G.) (Kluwer, Dordrecht, 1996)

    Google Scholar 

  2. C. Kittel: Introduction to Solid State Physics, 7th edn. (Wiley, New York 1995) p. 37

    Google Scholar 

  3. L.M. Falicov: Group Theory and its Physical Applications (Univ. Chicago Press, Chicago 1966)

    Google Scholar 

  4. G.F. Koster: Space groups and their representations, in Solid State Physics 5, 173–256 (Academic, New York 1957)

    Google Scholar 

  5. G. Lucovsky, A comparison of the long wavelength optical phonons in trigonal Se and Te, Phys. Stat. Sol. (b) 49, 633 (1972)

    Article  Google Scholar 

  6. D.M. Greenaway, G. Harbeke: Optical Properties and Band Structure of Semiconductors (Pergamon, New York 1968) p. 44

    Google Scholar 

  7. H. Jones: The Theory of Brillouin Zones and Electronic States in Crystals, 2nd edn. (North-Holland, Amsterdam 1975)

    Google Scholar 

  8. M.L. Cohen, J. Chelikowsky: Electronic Structure and Optical Properties of Semiconductors, 2nd edn., Springer Ser. Solid-State Sci., Vol. 75 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  9. J.R. Chelikowsky, D.J. Chadi, M.L. Cohen: Calculated valence band densities of states and photoemission spectra of diamond and zinc-blende semiconductors. Phys. Rev. B 8, 2786–2794 (1973)

    Article  Google Scholar 

  10. C. Varea de Alvarez, J.P. Walter, R.W. Boyd, M.L. Cohen: Calculated band structures, optical constants and electronic charge densities for InAs and InSb. J. Chem. Phys. Solids 34, 337–345 (1973)

    Article  Google Scholar 

  11. P. Hohenberg, W. Kohn: Inhomogeneous electron gas. Phys. Rev. B 863, 136 (1964)

    Google Scholar 

  12. W. Kohn, L. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. A 113, 140 (1965)

    Google Scholar 

  13. M.S. Hybertsen, S.G. Louie: Electron correlation in semiconductors and insulators. Phys. Rev. B 34, 5390–5413 (1986)

    Article  Google Scholar 

  14. N. Trouillier, J.L. Martins: Efficient pseudopotentials for plane wave calculations. Phys. Rev. B 43, 1993–2006 (1991)

    Article  Google Scholar 

  15. E.O. Kane: Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249–261 (1957)

    Article  Google Scholar 

  16. M. Cardona, F.H. Pollak: Energy-band structure of germanium and silicon. Phys. Rev. 142, 530–543 (1966); see also Vol. 41B

    Article  Google Scholar 

  17. M. Cardona: Band parameters of semiconductors with zincblende, wurtzite, and germanium structure. J. Phys. Chem. Solids 24, 1543–1555 (1963); erratum: ibid. 26, 1351E (1965)

    Article  Google Scholar 

  18. O. Madelung, M. Schulz, H. Weiss (eds.): Landolt-Börnstein, Series III, Vol. 17a–h (Semiconductors) (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  19. E.O. Kane: The k · p method. Semiconductors and Semimetals 1, 75–100 (Academic, New York 1966)

    Google Scholar 

  20. M. Cardona, N.E. Christensen, G. Fasol: Relativistic band structure and spin-orbit splitting of zincblende-type semiconductors. Phys. Rev. B 38, 1806–1827 (1988)

    Article  Google Scholar 

  21. G. Dresselhaus, A.F. Kip, C. Kittel: Cyclotron resonance of electrons and holes in silicon and germanium crystals. Phys. Rev. 98, 368–384 (1955)

    Article  Google Scholar 

  22. M. Willatzen, M. Cardona, N.E. Christensen: LMTO and k·p calculation of effective masses and band structure of semiconducting diamond. Phys. Rev. B50, 18054 (1994)

    Article  Google Scholar 

  23. J.M. Luttinger: Quantum theory of cyclotron resonance in semiconductors: General theory. Phys. Rev. 102, 1030–1041 (1956)

    Article  Google Scholar 

  24. W.A. Harrison: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989)

    Google Scholar 

  25. D.J. Chadi, M.L. Cohen: Tight-binding calculations of the valence bands of diamond and zincblende crystals. Phys. Stat. Solidi B 68, 405–419 (1975)

    Article  Google Scholar 

  26. W.A. Harrison: The physics of solid state chemistry, in Festkörperprobleme 17, 135–155 (Vieweg, Braunschweig, FRG 1977)

    Google Scholar 

  27. F. Herman: Recent progress in energy band theory, in Proc. Int'l Conf. on Physics of Semiconductors (Dunod, Paris 1964) pp. 3–22

    Google Scholar 

  28. T. Dietl, W. Dobrowolski, J. Kosut, B.J. Kowalski, W. Szuskiewicz, Z. Wilamoski, A.M. Witowski: HgSe: Metal or Semiconductor? Phys. Rev. Lett. 81, 1535 (1998); D. Eich, D. Hübner, R. Fink, E. Umbach, K. Ortner, C.R. Becker, G. Landwehr, A. Flezsar: Electronic structure of HgSe investigated by direct and inverse photoemission. Phys. Rev. B61, 12666–12669 (2000)

    Article  Google Scholar 

  29. T.N. Morgan: Symmetry of electron states in GaP. Phys. Rev. Lett. 21, 819–823 (1968)

    Article  Google Scholar 

  30. R.M. Wentzcovitch, M. Cardona, M.L. Cohen, N.E. Christensen: X1 and X3 states of electrons and phonons in zincblende-type semiconductors. Solid State Commun. 67, 927–930 (1988)

    Article  Google Scholar 

  31. S.H. Wei, A. Zunger: Band gaps and spin-orbit splitting of ordered and disordered AlxGa1−xAs and GaAsxSb1−x alloys. Phys. Rev. B 39, 3279–3304 (1989)

    Article  Google Scholar 

Group Theory and Applications

  • Burns G.: Introduction to Group Theory and Applications (Academic, New York 1977)

    Google Scholar 

  • Evarestov R.A., V.P. Smirnov: Site Symmetry in Crystals, Springer Ser. Solid-State Sci., Vol. 108 (Springer, Berlin, Heidelberg 1993)

    Google Scholar 

  • Falicov L.M.: Group Theory and Its Physical Applications (Univ. Chicago Press, Chicago 1966)

    Google Scholar 

  • Heine V.: Group Theory in Quantum Mechanics (Pergamon, New York 1960)

    Google Scholar 

  • Inui T., Y. Tanabe, Y. Onodera: Group Theory and Its Applications in Physics, 2nd edn. Springer Ser. Solid-State Sci., Vol. 78 (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  • Jones H.: Groups, Representations, and Physics (Hilger, Bristol 1990)

    Book  Google Scholar 

  • Koster G.F.: Space groups and their representations. Solid State Physics 5, 173–256 (Academic, New York 1957)

    Google Scholar 

  • Lax M.: Symmetry Principles in Solid State and Molecular Physics (Wiley, New York 1974)

    Google Scholar 

  • Ludwig W., C. Falter: Symmetries in Physics, 2nd edn., Springer Ser. Solid-State Sci., Vol. 64 (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  • Tinkham M.: Group Theory and Quantum Mechanics (McGraw-Hill, New York 1964)

    Google Scholar 

  • Vainshtein B.K.: Fundamentals of Crystals, 2nd edn., Modern Crystallography, Vol. 1 (Springer, Berlin, Heidelberg 1994)

    Google Scholar 

Electronic Band Structures

  • Cohen M.L., Chelikowsky, J.: Electronic Structure and Optical Properties of Semiconductors, 2nd edn., Springer Ser. Solid-State Sci., Vol. 75 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  • Greenaway D.L., Harbeke, G.: Optical Properties and Band Structure of Semiconductors (Pergamon, New York 1968)

    Google Scholar 

  • Harrison W.A.: Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond (Dover, New York 1989)

    Google Scholar 

  • Jones H.: The Theory of Brillouin Zones and Electronic States in Crystals (North-Holland, Amsterdam 1962)

    Google Scholar 

  • Phillips J.C.: Covalent Bonding in Crystals, Molecules, and Polymers (Univ. Chicago Press, Chicago 1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, P.Y., Cardona, M. (1996). Electronic Band Structures. In: Fundamentals of Semiconductors. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26475-2_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-26475-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25470-6

  • Online ISBN: 978-3-540-26475-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics