Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 16))

  • 2589 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Alam, J. Bude, A. Ghetti, “Field acceleration for oxide breakdown — Can an accurate anode hole injection model resolve the E vs. 1/E controversy?”, Proc. IRPS, pp. 21–26, 2000

    Google Scholar 

  2. M.A. Alam, B.E. Weir, P.J. Silverman, “A study of soft and hard breakdown — Part I: Analysis of statistical percolation conductance”, IEEE Trans. Electron Devices 49, no. 2, pp. 232–238, 2002

    Article  Google Scholar 

  3. M.A. Alam, B.E. Weir, P.J. Silverman, “A study of soft and hard breakdown — Part II: Principles of area, thickness, and voltage scaling”, IEEE Trans. Electron Devices 49, no. 2, pp. 239–2468, 2002

    Article  Google Scholar 

  4. M.A. Alam, B. Weir, J. Bude, P. Silverman, D. Monroe, “Explanation of soft and hard breakdown and its consequences for area scaling”, IEDM Tech. Dig., pp. 449–452, 1999

    Google Scholar 

  5. G.B. Alers, B.E. Weir, M.A. Alam, G.L. Timp, T. Sorch, “Trap assisted tunneling as a mechanism of degradation and noise in 2–5nm oxides”, Proc. IRPS, pp. 76–79, 1998

    Google Scholar 

  6. P.P. Apte, K.C. Saraswat, “Modeling ultrathin dielectric breakdown on correlation of charge trap-generation to charge-to-breakdown”, Proc. IRPS, pp. 136–142, 1994

    Google Scholar 

  7. E. Avni, J. Shappir, “A model for silicon-oxide breakdown under high field and current stress”, J. Appl. Phys. 64, no. 2, pp. 743–748, 1988

    Article  Google Scholar 

  8. O. Briere, J.A. Chroboczek, and G. Ghibaudo, “Random telegraph signal in the quasi-breakdown current of MOS capacitors”, ESSDERC Proc., p. 759, 1996

    Google Scholar 

  9. O. Brière, A. Halimaoui, G. Ghibaudo, “Breakdown characteristics of ultra-thin gate oxides following field and temperature stresses”, Solid-State Electronics 41, no. 7, pp. 981–985, 1997

    Article  Google Scholar 

  10. S. Bruyere, E. Vincent, G. Ghibaudo, “Quasi-breakdown in ultrathin SiO2 films: occurrence, characterization and reliability assessment methodology”, IRPS Proc., pp. 48–54, 2000

    Google Scholar 

  11. D.A. Buchanan, S.-H. Lo, “Reliability and integration of ultra-thin gate dielectrics for advanced CMOS”, Microelectronic Engineering 36, no. 1–4, pp. 13–20, 1997

    Article  Google Scholar 

  12. J.D. Bude, B.E. Weir, P.J. Silverman, “Explanation of stress-induced damage in thin oxides”, IEDM Tech. Dig., pp. 179–182, 1998

    Google Scholar 

  13. E. Cartier, J.S. Tsang, M.V. Fischetti, D.A. Buchanan, “Light emission during during direct and Fowler-Nordheim tunneling in ultra thin MOS tunnel junctions”, Microelectronic Engineering 36, no. 1–4, pp. 103–106, 1997

    Article  Google Scholar 

  14. I.C. Chen, S. Holland, C. Hu, “A quantitative physical model for time-dependent breakdown in SiO2”, Proc. IRPS, pp. 24–31, 1985

    Google Scholar 

  15. I. C. Chen, S. Holland, C. Hu, “Hole trapping and breakdown in thin SiO2,” IEEE Electron Device Lett. 7, no. 3, pp. 164–167, 1986

    Google Scholar 

  16. I.C. Chen, S. Holland, K.K. Young, C. Chang, C. Hu, “Substrate hole current and oxide breakdown”, Appl. Phys. Lett. 49, no. 11, pp. 669–671, 1986

    Article  Google Scholar 

  17. I. C. Chen, S. Holland, C. Hu, “Electron-trap generation by recombination of electrons and holes in SiO2”, J. Appl. Phys. 61, no. 9, pp. 4544–4548, 1987

    Article  Google Scholar 

  18. C.-C. Chen, C.-Y. Chang, C.-H. Chien, T.-H. Huang, H.-C. Lin, M.-S. Liang, “Temperature-accelerated dielectric breakdown in ultrathin gate oxides”, Appl. Phys. Lett. 74, no. 24, pp. 3708–3710, 1999

    Article  Google Scholar 

  19. K.P. Cheung, J.I. Colonell, C.P. Chang, W.Y.C. Lai, C.T. Liu, R. Liu, and C.S. Pai, “Energy funnels-a new oxide breakdown model”, Symp. VLSI Technol. Dig., p. 145, 1997

    Google Scholar 

  20. K.P. Cheung, “A physics-based, unified gate-oxide breakdown model”, IEDM Tech. Dig., 1999

    Google Scholar 

  21. C.-L. Chiang, N. Khurana, “Imaging and detection of current conduction in dielectric films by emission microscopy”, IEDM Tech. Dig., pp. 672–675, 1986

    Google Scholar 

  22. F. Crupi, R. Degraeve, G. Groeseneken, T. Nigam, H.E. Maes, “On the properties of the gate and substrate current after soft breakdown in ultrathin oxide layers”, IEEE Trans. Elec. Dev. 45, No. 11, pp. 2329–2334, 1998

    Article  Google Scholar 

  23. J. De Blauwe, J. Van Houdt, D. Wellekens, R. Degraeve, Ph. Roussel, L. Haspeslagh, L. Deferm, G. Groeseneken, H.E. Maes, “A new quantitative model to predict SILC-related disturb characteristics in Flash E2PROM devices”, IEDM Tech. Dig., pp. 343–346, 1996

    Google Scholar 

  24. J. De Blauwe, R. Degraeve, R. Bellens, J. Van Houdt, Ph. Roussel, G. Groeseneken, H.E. Maes, “Study of DC Stress Induced Leakage Current (SILC) and its dependence on oxide nitridation”, Proc. of ESSDERC, pp. 361–364, 1996

    Google Scholar 

  25. R. Degraeve, B. Kaczer, G. Groeseneken, “Reliability: a possible showstopper for oxide thickness scaling?”, Semiconductor Science and Technology 15, no. 5, pp. 436–444, 2000

    Article  Google Scholar 

  26. R. Degraeve, B. Kaczer, F. Schuler, M. Lorenzini, D. Wellekens, P. Hendrickx, J. Van Houdt, L. Haspeslagh, G. Tempel, G. Groeseneken, “Statistical model for SILC and pre-breakdown current jumps in ultra-thin oxide layers”, IEDM Techn. Dig., pp. 121–124, 2001

    Google Scholar 

  27. R. Degraeve, F. Schuler, M. Lorenzini, D. Wellekens, P. Hendrickx, J. Van Houdt, L. Haspeslagh, G. Groeseneken, G. Tempel, “analytical model for failure rate prediction due to anomalous charge loss of flash memories”, IEDM Techn. Dig., pp. 699–702, 2001

    Google Scholar 

  28. R. Degraeve, G. Groeseneken, I. De Wolf, H.E. Maes, “Oxide and interface degradation and breakdown under medium and high field injection conditions: a correlation study,” Microelectronic Engineering (Proceedings INFOS) 28, no. 1–4, pp. 313–316, 1995

    Article  Google Scholar 

  29. R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, H.E. Maes, “A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides”, IEDM Tech. Dig., pp. 863–866, 1995

    Google Scholar 

  30. R. Degraeve, Ph. Roussel, G. Groeseneken, H.E. Maes, “A new analytic model for the description of the intrinsic oxide breakdown statistics of ultrathin oxides”, Microelectronics and Reliability (Proc. ESREF) 36, no. 11/12, pp. 1639–1642, 1996

    Google Scholar 

  31. R. Degraeve, J.L. Ogier, R. Bellens, Ph. Roussel, G. Groeseneken, H.E. Maes, “A new model for the field dependence of intrinsic and extrinsic time-dependent dielectric breakdown”, IEEE Trans. Elec. Dev. 45, No. 2, pp. 472–481, 1998

    Article  Google Scholar 

  32. R. Degraeve, G. Groeseneken, R. Bellens, J.L. Ogier, M. Depas, Ph. Roussel, H.E. Maes, “New insights in the relation between electron trap generation and the statistical properties of oxide breakdown”, IEEE Trans. Elec. Dev. 45, No. 4, pp. 904–911, 1998

    Article  Google Scholar 

  33. R. Degraeve, N. Pangon, B. Kaczer, T. Nigam, G. Groeseneken, A. Naem, “Temperature acceleration of oxide breakdown and its impact on ultra-thin gate oxide reliability”, Symposium on VLSI Technology Digest of Technical papers, pp.59–60, 1999

    Google Scholar 

  34. M. Depas, T. Nigam, and M. Heyns, “Soft breakdown of ultra-thin gate oxide layers”, IEEE Trans. Electron Devices 43, no. 9, p. 1499, 1996

    Article  Google Scholar 

  35. M. Depas, M.M. Heyns, “Relation between trap creation and breakdown during tunneling current stressing of sub-3nm gate oxide”, Microelectronic Engineering 36, no. 1–4, pp. 21–24, 1997

    Article  Google Scholar 

  36. D. J. DiMaria, J. W. Stasiak, “Trap creation in silicon dioxide produced by hot electrons,” J. Appl. Phys. 65, no. 6, pp. 2342–2356, 1989

    Article  Google Scholar 

  37. D. J. DiMaria, D. Arnold, E. Cartier, “Impact ionization and positive charge formation in silicon dioxide films on silicon,” Appl. Phys. Lett. 60, no. 17, pp. 2118–2120, 1992

    Article  Google Scholar 

  38. D.J. DiMaria, E. Cartier, D. Arnold, “Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon”, J. Appl. Phys. 73, no. 7, pp. 3367–3384, 1993

    Article  Google Scholar 

  39. D. J. DiMaria, “Hole trapping, substrate currents, and breakdown in thin silicon dioxide films,” IEEE Electron. Device Lett 16, no. 5, pp. 184–186, 1995

    Article  Google Scholar 

  40. D. J. DiMaria, D. A. Buchanan, J. H. Stathis, R. E. Stahlbush, “Interface states induced by the presence of trapped holes near the silicon-silicon-dioxide interface,” J. Appl. Phys. 77, no. 5, pp. 2032–2040, 1995

    Article  Google Scholar 

  41. D.J. DiMaria, E. Cartier, D.A. Buchanan, “Anode hole injection and trapping in silicon dioxide,” J. Appl. Phys. 80, no. 1, pp. 304–317

    Google Scholar 

  42. D. J. DiMaria, “Dependence on gate work function of oxide charging, defect generation, and hole currents in metal-oxide-semiconductor structures,” J. Appl. Phys. 81, no. 7, pp. 3220–3226, 1997

    Article  Google Scholar 

  43. D. J. DiMaria, J.H. Stathis, “Explanation for the oxide thickness dependence of breakdown characteristics of metal-oxide-semiconductor structures,” Appl. Phys. Lett. 70, no. 20, pp. 2708–2710 1997.

    Article  Google Scholar 

  44. D. J. DiMaria, J.H. Stathis, “Non-Arrhenius temperature dependence of reliability in ultrathin silicon dioxide films,” Appl. Phys. Lett. 74, no. 12, pp. 1752–1754, 1999

    Article  Google Scholar 

  45. D.J. Dumin, J.R. Maddux, R.S. Scott, R. Subramoniam, “A model relating wearout to breakdown in thin oxides”, IEEE Trans. Electron Devices 41, no. 9, pp. 1570–1580, 1994

    Article  Google Scholar 

  46. K.R. Farmer, R. Saletti, R.A. Buhrman, “Current fluctuations and silicon wear-out in metal-oxide semiconductor tunnel diodes”, Appl. Phys. Lett. 52, no. 20, pp.1749–1751, 1988

    Article  Google Scholar 

  47. M. V. Fischetti, “Model for the generation of positive charge at the Si-SiO2 interface based on hot-hole injection from the anode,” Physical Review B 31, no. 4, pp. 2099–2113, 1985

    Article  Google Scholar 

  48. A. Ghetti, J. Bude, G. Weber, “TBD prediction from meuasurements at low field and room temperature using a new estimator”, Symp. on VLSI Technology Dig. of Tech. Papers, 2000

    Google Scholar 

  49. A. Ghetti, E. Sangiorgi, J. Bude, T.W. Sorsch, G. Weber, “Low voltage tunneling in ultra-thin oxides: a monitor for interface states and degradation”, IEDM Tech. Dig., pp. 731–734, 1999

    Google Scholar 

  50. G. Groeseneken, H.E. Maes, N. Beltràn, R.F. De Keersmaecker, “A reliable approach to charge-pumping measurements in MOS transistors”, IEEE Trans. Electron Devices, 31, no. 1, pp. 42–53, 1984

    Google Scholar 

  51. Y.D. He, H, Guan, M.F. Li, B. J. Cho, Z. Dong “Conduction mechanism under quasibreakdwon of ultrathin oxide”, Appl. Phys. Lett. 75, no. 16, pp. 2432–2434, 1999

    Article  Google Scholar 

  52. C. Hu, Q. Lu, “A unified gate oxide reliability model”, Proc. IRPS, pp. 47–51, 1999

    Google Scholar 

  53. D. Ielmini, A.S. Spinalli, A.L. Lacaiti, A. Modelli, “Statistical modeling of relibility and scaling projections for flash memories”, IEDM Tech. Dig., pp. 703–706, 2001

    Google Scholar 

  54. B. Kaczer, R. Degraeve, N. Pangon, G. Groeseneken, “The influence of elevated temperature on degradation and lifetime prediction of thin silicon-dioxide films”, IEEE Trans. Elec. Dev. 47, No. 7, pp. 1514–1521, 2000

    Article  Google Scholar 

  55. B. Kaczer, R. Degraeve, N. Pangon, T. Nigam, G. Groeseneken, “Investigation of temperature acceleration of thin oxide time-to-breakdown”, Microelectronic Engineering (INFOS 1999) 48, no. 1–4, pp. 47–50, 1999

    Article  Google Scholar 

  56. T.-K. Kang, M.-J. Chen, C.-H. Liu, Y.J. Chang, S.-K. Fan, “Numerical confirmation of inelastic trap-assisted tunneling (ITAT) as SILC mechanism”, IEEE Trans. Electron Devices 48, no. 10, pp. 2317–2321, 2001

    Article  Google Scholar 

  57. M. Kato, N. Myamoto, H. Hume, A. Satoh, T. Adachi, M. Ushiyama, K. Kimura, “Read-disturb degradation mechanism due to electron trapping in tunnel oxide for low-voltage flash memories, IEDM Tech. Dig., pp. 45–48, 1994

    Google Scholar 

  58. M. Kimura, “Field and temperature acceleration model for time-dependent dielectric breakdown”, IEEE Trans. Electron Devices 46, no. 1, pp. 220–229, 1999

    Article  Google Scholar 

  59. L. Larcher, A. Paccagnella, G. Ghidini, “A model of the stress induced laekage current in gate oxides”, IEEE Trans. Electron Devices 48, no. 2, pp. 285–288, 2001

    Article  Google Scholar 

  60. S.H. Lee, B.J. Cho, J.C. Kim, and S.H. Choi, “Quasi-breakdown of ultrathin gate oxide under high field stress”, IEDM Tech. Dig., pp. 605–608, 1994

    Google Scholar 

  61. C. Leroux, D. Blachier, O. Briere, G. Reimbold, “Light emission microscopy for thin oxide reliability analysis”, Microelectronic Engineering 36, no. 1–4, pp. 297–300, 1997

    Article  Google Scholar 

  62. M.F. Li, Y.D. He, S.G. Ma, B.-J. Cho, K.F. Lo, M.Z. Xu, “Role of hole fluence in gate oxide breakdwon”, IEEE Electron. Device Lett. 20, no. 11, pp. 586–588, 1999

    Article  Google Scholar 

  63. H.Z. Massoud, R. Deaton, “Percolation model for the extreme-value statistics of dielectric breakdown in rapid-thermal oxides”, Extended abstracts of the ECS Spring Meeting, pp. 287–288, 1994

    Google Scholar 

  64. J.M. McKenna, E.Y. Wu, S.-H. Lo, “Tunneling current characteristics and oxide breakdown in p+poly gate PFET capacitors”, Proc. IRPS, pp. 16–20, 2000

    Google Scholar 

  65. J.W. McPherson, D.A. Baglee, “Acceleration factors for thin gate oxide stressing”, Proc. IRPS, pp. 1–5, 1985

    Google Scholar 

  66. J.W. McPherson, V. Reddy, K. Banerjee, H. Le, “Comparison of E and 1/E TDDB models for SiO2 underlong-term/low-field test conditions”, IEDM Tech. Dig., pp. 171–174, 1998

    Google Scholar 

  67. J.W. McPherson, H.C. Mogul, “Disturbed bonding states in SiO2 thin-films and their impact on time-dependent dielectric breakdown”, Proc. IRPS, pp. 47–56, 1998

    Google Scholar 

  68. E. Miranda, J. Suñé, R. Rodríguez, M. Nafría, X. Aymerich, “Switching behavior of the soft breakdown conduction characteristic in ultra-thin (<5nm) oxide MOS capacitor”, Proc. IRPS, pp. 42–46, 1998

    Google Scholar 

  69. R. Moazzama, C. Hu, “Stress-induced current in thin siliocon dioxide films”, IEDM Tech. Dig., pp. 139–142, 1992

    Google Scholar 

  70. A. Modelli, B. Ricco, “Electric Field and Current dependence of SiO2 Intrinsic Breakdown”, IEDM Tech. Dig., pp.148–151, 1984

    Google Scholar 

  71. C. Monsérié, C. Papadas, G. Ghibaudo, C. Gounelle, P. Mortini, G. Pananakakis, “Correlation between negative bulk oxide charge and breakdown, modeling and new criteria for dielectric quality evaluation”, Proc. IRPS, pp. 280–284, 1993

    Google Scholar 

  72. M. Nafría, J. Suñé, X. Aymerich, “Exploratory observations of post-breakdown conduction in polycrystalline-silicon and metal gated thin-oxide metal-oxide-semiconductor capacitors”, J. Appl. Phys. 73, no. 1, pp. 205–215, 1993

    Article  Google Scholar 

  73. P.E. Nicollian, W.R. Hunter, J.C. Hu, “Experimental evidence for voltage driven breakdown models in ultrathin gate oxides”, Proc. IRPS, pp. 7–15, 2000

    Google Scholar 

  74. E.H. Nicollian, J.R. Brews, “MOS Physics and Technology”, Wiley New York, 1982

    Google Scholar 

  75. P.E. Nicollian, M. Rodder, D.T. Grider, P. Chen, R.M. Wallace, S.V. Hattangady, “Low voltage stress-induced-leakage-current in ultrathin gate oxides”, Proc. IRPS, pp. 400–404, 1999

    Google Scholar 

  76. T. Nigam, R. Degraeve, G. Groeseneken, M.M. Heyns, H.E. Maes, “Constant current charge-to-breakdown: still a valid tool to study the reliability of MOS structures?”, Proc. IRPS, pp. 62–69, 1998

    Google Scholar 

  77. T. Nigam, R. Degraeve, G. Groeseneken, M.M. Heyns, H.E. Maes, “A fast and simple methodology for lifetime prediction of ultra-thin oxides”, Proc. IRPS, pp. 381–388, 1999

    Google Scholar 

  78. T.H. Ning, “Hot-electron emission from silicon into silicon dioxide,” Solid State Electronics 21, pp. 273–282, 1978

    Article  Google Scholar 

  79. Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Dynamic model of trapping-detrapping in SiO2”, J. Appl. Phys. 58, no. 6, pp. 2252–2261, 1985

    Article  Google Scholar 

  80. Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, “Trap generation and occupation dynamics in SiO2 under charge injection stress”, J. Appl. Phys. 60, no. 6, pp. 2024–2034, 1986

    Article  Google Scholar 

  81. A. Ohata, A. Toriumi, M. Iwase, and K. Natori, “Observation of random telegraph signals: anomalous nature of defects at the Si/SiO2 interface”, J. Appl. Phys. 68, p. 200, 1990

    Article  Google Scholar 

  82. K. Okada, “A model for anomalous leakage current in flash memories and its application for the prediction of retention characteristics”, IEDM Tech. Dig., pp. 707–710, 2001

    Google Scholar 

  83. K. Okada, S. Kawasaki, and Y. Hirofuji, “New experimental findings on stresss induced leakage current of ultra thin silicon dioxides”, Ext. Abst. of the 1994 SSDM, p. 565, 1994

    Google Scholar 

  84. K. Okada, “An experimental evidence to link the origins of ‘A-mode’ and ‘B mode’ stress induced leakage current”, Extended abstracts of the 1997 Int. Conf. on SSDM, pp. 92–93, 1997

    Google Scholar 

  85. K. Okada and K. Taniguchi, “Electrical stress-induced variable range hopping conduction in ultrathin silicon dioxides”, Appl. Phys. Lett. 70, p. 351, 1997

    Article  Google Scholar 

  86. K. Okada, H. Kubo, A. Ishinaga, K. Yoneda, “A new prediction method for oxide lifetime and its application to study dielectric breakdown mechanism”, VLSI Proc., pp. 158–159, 1998

    Google Scholar 

  87. K. Okada, K. Yoneda, “A consistent model for time dependent dielectric breakdown in ultrathin silicon oxides”, IEDM Tech. Dig., 1999

    Google Scholar 

  88. P. Olivo, T.N. Nguyen, B. Ricco, “High-Field-Induced Degradation in Ultra-Thin SiO2 Films”, IEEE Trans. Electron Devices 35, pp. 2259–2267, 1988

    Article  Google Scholar 

  89. N.K. Patel, A. Toriumi, “Stress-induced leakage current in ultrathin SiO2 films”, Appl. Phys. Lett. 64, no. 14, pp. 1809–1811, 1994

    Article  Google Scholar 

  90. G.M. Paulzen, “Qbd dependencies of ultrathin gate oxides on large area capcitors”, Microelectronic Engineering (Proceedings INFOS), 36, no. 1–4, pp. 321–324, 1997

    Article  Google Scholar 

  91. T. Pompl, H. Wurzer, M. Kerber, R.C.W. Wilkins, I. Eisele, “Influence of soft breakdown on nMOSFET device characteristics”, Proc. IRPS, pp. 82–87, 1999

    Google Scholar 

  92. M. Rasras, I. De Wolf, G. Groeseneken, B. Kaczer, R. Degraeve, H.E. Maes, “Photo-carrier generation as the origin of Fowler-Nordheim-induced substrate hole current in thin oxides”, IEDM Tech. Dig., pp. 465–468, 1999

    Google Scholar 

  93. B. Ricco, G, Gozzi, M. Lanzoni, “Modelling and simulation of stress-induced leakage current in ultrathin SiO2 films”, IEEE Trans. Electron Devices 45, no. 7, pp. 1554–1560, 1998

    Article  Google Scholar 

  94. P. Riess, G. Ghibaudo, G. Pananakakis, “Stress-induced leakage current generation kinetics based on anode hole injection and hole dispersive transport”, J. Appl. Phys. 87, no. 9, pp. 4626–4628, 2000

    Article  Google Scholar 

  95. P. Riess, G. Ghibaudo, G. Pananakakis, “Analysis of the stress-induced leakage current and related trap distribution”, Appl. Phys. Lett. 75, no. 24, pp. 3871–3873, 1999

    Article  Google Scholar 

  96. Ph. Roussel, R. Degraeve, G. Van den bosch, B. Kaczer, G. Groeseneken, “Accurate and robust noise-based trigger algorithm for soft breakdown detection in ultrathin gate dielectrics”, IEEE Trans. Device and Materials Reliability 1, no. 2, pp. 120–127, 2001

    Article  Google Scholar 

  97. E.F. Runnion, S.M. Gladstone IV, R.S. Scott, D.J. Dumin, L. Lie, J. Mitros, “Limitations on oxide thicknesses in FLASH EEPROM apllications”, Proc. IRPS, pp. 93–99, 1996

    Google Scholar 

  98. T. Sakura, H. Utsunomiya, Y. Kamakura, K. Taniguchi, “A detailed study of soft-and pre-soft-breakdowns in small geometry MOS structures”, IEDM Tech. Dig., pp. 183–186, 1998

    Google Scholar 

  99. H. Satake, A. Toriumi, “Substrate hole current generation and oxide breakdown in Si MOSFETs under Fowler-Nordheim electron tunneling injection”, IEDM Tech. Dig., pp. 337–340, 1993

    Google Scholar 

  100. H. Satake, A. Toriumi, “Common origin for stress-induced leakage current and electron trap generation in SiO2”, Appl. Phys. Lett. 67, no. 23, pp. 3489–3490, 1995

    Article  Google Scholar 

  101. H. Satake, S. Takagi, A. Toriumi, “Evidence of electron-hole cooperation in SiO2 dielectric breakdown”, Proc. IRPS, pp. 156–163, 1997

    Google Scholar 

  102. B. Schlund, C. Messick, J.S. Suehle, P. Chaparala, “A new physics-based model for time-dependent-dielectric-breakdown”, Proc. IRPS, pp. 84–92, 1996

    Google Scholar 

  103. K. F. Schuegraf, C. Hu, “Metal-oxide-semiconductor field-effect-transistor substrate current during Fowler-Nordheim tunneling stress and silicon dioxide reliability,” J. Appl. Phys. 76, no. 6, pp. 3695–3700, 1994

    Article  Google Scholar 

  104. K. F. Schuegraf, C. Hu, “Reliability of thin SiO2,” Semicond. Sci. Technol. 9, pp. 989–1004, 1994

    Article  Google Scholar 

  105. K.F. Schuegraf, C. Hu, “Hole Injection SiO2 Breakdown Model for Very Low Voltage Lifetime Extrapollation”, IEEE Trans. Electron Devices 41, no. 5, pp. 761–767, 1994

    Article  Google Scholar 

  106. F. Schuler, G. Tempel, H. Melzner, M. Jacob, P. Hendrickx, D. Wellekens, J. Van Houdt, “Failure rate prediction and accelerated detection of anomalous charge loss in flash memories by using an analytic transient physics-based charge loss model”, Jpn. J. Appl. Phys. 41, pp. 2650–2653, 2002

    Article  Google Scholar 

  107. R.S. Scott, N.A. Dumin, T.W. Hughes, D.J. Dumin, B.T. Moore, “Properties of high voltage stress generated traps in thin silicon oxides”, Proc. IRPS, pp. 131–141, 1995

    Google Scholar 

  108. N. Shiono, M. Itsumi, “A Lifetime Projection Method Using Series Model and Acceleration Factors for TDDB failures of Thin Gate Oxides”, Proc. IRPS, pp. 1–6, 1993

    Google Scholar 

  109. B.I. Shklosskii, A.L. Efros, “Electronic Properties of Doped Semiconductors”, Berlin, Springer-Verlag, 1984

    Google Scholar 

  110. J.H. Stathis, A Vayshenker, P.R. Varakamp, E.Y. Wu, C. Montrose, J. McKenna, D.J. DiMaria, L.-K. Han, E. Cartier, R.A. Wachnik, B.P. Linder, “Breakdown meusurements of ultra-thin SiO2 at low voltage”, Symp. on VLSI Technology Dig. of Tech. Papers, 2000

    Google Scholar 

  111. J.H. Stathis, “Quantitative model of the thickness dependence of breakdown in ultrathin oxides”, Microelectronics Enigeering 36, no. 1–4, pp.325–328, 1997

    Article  Google Scholar 

  112. J.H. Stathis, D.J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage”, IEDM Tech. Dig., pp. 167–170, 1998

    Google Scholar 

  113. R. Subramoniam, R.S. Scott, D.J. Dumin, “A Statistical Model of Oxide Breakdown Based on a Physical Description of Wearout”, IEDM Tech. Dig., pp. 135–138, 1992

    Google Scholar 

  114. J.S. Suehle, P. Chaparala, C. Messick, W.M. Miller, K.C. Boyko, “Field and temperature acceleration of time-dependent dielectric breakdown in intrinsic thin SiO2”, Proc. IRPS, pp. 120–125, 1994

    Google Scholar 

  115. J. Suñé, G. Mura, E. Miranda, “Are soft breakdown and hard breakdown of ultrathin gate oxides actually different failure mechanisms?”, IEEE Electron. Device Lett. 21, no. 4, pp. 167–169, 2000

    Article  Google Scholar 

  116. J. Suñé, I. Placencia, N. Barniol, E. Farrés, F. Martín, X. Aymerich, “On the breakdown statistics of very thin SiO2 films”, Thin Solid Films 185, pp. 347–362, 1990

    Article  Google Scholar 

  117. J. Suñé, E. Miranda, M. Nafría, X. Aymerich, “Point contact conduction at the oxide breakdown of MOS devices”, IEDM Tech. Dig., pp. 191–194, 1998

    Google Scholar 

  118. J. Suñé, E. Miranda, M. Nafría, X. Aymerich, “Modeling the breakdown spots in silicon dioxide films as point contacts”, Appl. Phys. Lett. 75, no. 7, pp. 959–961, 1999

    Article  Google Scholar 

  119. S. Takagi, N. Yasuda, A Toriumi, “Experimental evidence of inelastic tunneling in stress-induced laekage current”, IEEE Trans. Electron Devices 46, no. 2, pp. 335–341, 1999

    Article  Google Scholar 

  120. A. Teramoto, K. Kabayashi, Y. Matsui, M. Hirayama, A. Yasuoka, “Excess currents induced by hot-hole injection and F-N stress in thin SiO2 films”, Proc. IRPS, pp. 113–116, 1996

    Google Scholar 

  121. A Teramoto, H. Umeda, K. Azamawari, K. Kobayashi, K. Shiga, J. Komori, Y. Ohno, H. Miyoshi, “Study of oxide breakdown under very low electric field”, Proc. IRPS, pp. 66–71, 1999

    Google Scholar 

  122. H. Uchida, T. Ajika, “Electron trap center generation due to hole trapping in SiO2 under Fowler-Nordheim tunneling conditions”, Appl. Phys. Lett. 51, no. 87, pp. 433–435, 1987

    Article  Google Scholar 

  123. N. Vandewalle, M. Ausloos, M. Houssa, P.W. Mertens, M.M. Heyns, “Non-Gaussian behavior and anticorrelations in ultrathin gate oxides after soft breakdown”, Appl. Phys. Lett. 74, no. 11, pp. 1579–1581, 1999

    Article  Google Scholar 

  124. E. Vincent, C. Papadas, C. Riva, F. Pio, G. Ghibaudo, “On the charge built-up mechanisms in very thin insulator layers”, Proc. ESSDERC, pp. 495–498, 1994

    Google Scholar 

  125. E. Vincent, C. Papadas, G. Ghibaudo, “Electric field dependence of charge build-up mechanisms and breakdown phenomena in thin oxides during Fowler-Nordheim injection”, Proc. ESSDERC, pp. 767–770, 1996

    Google Scholar 

  126. R.P. Vollertsen, “A new approach of statistical modelling the time dependent oxide breakdown”, ESREF, pp. 97–100, 1992

    Google Scholar 

  127. T. Wang, N.-K. Zous, J.-L. Lai, C. Huang, “Hot hole stress induced leakage current (SILC) transient in tunnel oxides”, IEEE Electron. Device Lett. 19, no. 5, pp. 148–150, 1998

    Article  Google Scholar 

  128. Z.A. Weinberg, M.V. Fischetti, “SiO2-induced substrate current and its relation to positive charge in field-effect transitors”, J. Appl. Phys. 59, no. 3, pp. 824–832, 1986

    Article  Google Scholar 

  129. B.E. Weir, M.A. Alam, J.D. Bude, P.J. Silverman, A. Ghetti, F. Baumann, P. Diodato, D. Monroe, T. Sorsch, G. L. Timp, Y. Ma, M.M. Brown, A. Hamad, D. Hwang, P. Mason, “Gate oxide reliability projection to the sub-2nm regime”, Semicond. Sci. Technol. 15, pp. 455–461, 2000

    Article  Google Scholar 

  130. B.E. Weir, P.J. Silverman, D. Monroe, K.S. Krisch, M.A. Alam, G.B. Alers, T.W. Sorsch, G.L. Timp, F. Baumann, C.T. Liu, Y. Ma, D. Hwang, “Ultrathin gate dielectrics: they break down, but do they fail?”, IEDM Tech. Dig., pp. 73–76, 1997

    Google Scholar 

  131. B.E. Weir, P.J. Silverman, M.A. Alam, F. Baumann, D. Monroe, A. Ghetti, J.D. Bude, G.L. Timp, A. Hamad, T.M. Oberdick, N.X. Zhao, Y. Ma, M.M. Brown, D. Hwang, T.W. Sorsch, J. Madic, “Gate oxieds in 50nm devices: thickness uniformity improves projected reliability”, IEDM Tech. Dig., pp. 437–440, 1999

    Google Scholar 

  132. D.R. Wolters, J.F. Verwey, Instabilities in Silicon Devices. Elsevier Science Publishers. B.V. (North-Holland), 1986, Chap. 6, pp. 332–335

    Google Scholar 

  133. E.Y. Wu, J.H. Stathis, L.-K. Han, “Ultra-thin oxide reliability for ULSI applications”, Semicond. Sci. Technol. 15, no. 5, pp. 425–435, 2000

    Article  Google Scholar 

  134. E. Wu, E. Nowak, J. Aitken, W. Abadeer, L.K. Han, S. Lo, “Structural dependence of dielectric breakdown in ultra-thin gate oxides and its relationship to soft breakdown modes and device failure”, IEDM Tech. Dig., pp. 187–190, 1998

    Google Scholar 

  135. J. Wu, L.F. Register, E. Rosenbaum, “Trap-assisted tunnelling current through ultra-thin oxide”, Proc. IRPS, pp. 389–395, 1999

    Google Scholar 

  136. A. Yassine, H.E. Nariman, K. Olasupo, “Field and temperature dependence of TDDB of ultrathin gate oxide”, IEEE Electron. Device Lett. 20, no. 8, pp. 390–392, 1999

    Article  Google Scholar 

  137. N.-K. Zous, T. Wang, C.-C. Yeh, C.W. Tsai, “Transient effects of positive oxide charge on stress-induced leakage current in tunnel oxides”, Appl. Phys. Lett. 75, no. 5, pp. 734–736, 1999

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Degraeve, R. (2005). Oxide Reliability Issues. In: Huff, H., Gilmer, D. (eds) High Dielectric Constant Materials. Springer Series in Advanced Microelectronics, vol 16. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26462-0_4

Download citation

Publish with us

Policies and ethics