Skip to main content

Adaptive Submodeling for Linear Elasticity Problems with Multiscale Geometric Features

  • Conference paper
  • 1517 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 44))

Summary

Submodeling is a procedure for local enhancement of the resolution of a coarse global finite element solution by solving a local problem on a subdomain containing an area of particular interest. We focus on linear elasticity and computation of local stress levels determined by the local geometry of the domain. We derive a posteriori error estimates for the submodeling procedure using duality techniques. Based on these estimates we propose an adaptive procedure for automatic choice of the resolution and size of the submodel. The procedure is illustrated for problems of industrial interest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfgang Bangerth and Rolf Rannacher. Adaptive finite element methods for differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003.

    Google Scholar 

  2. Mats G. Larson, Fredrik Bengzon and August Johansson. Adaptive submodeling for elasticity. Preprint to appear 2005, Chalmers Finite Element Center, Göteborg, Sweden, www.phi.chalmers.se

    Google Scholar 

  3. Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer-Verlag, New York, second edition, 2002.

    Google Scholar 

  4. Donald Estep, Michael Holst, and Mats G. Larson. Generalized Greens functions and the effective domain of influence. Preprint 10, Chalmers Finite Element Center, Göteborg, Sweden, 2003. to appear in SIAM J. Sci. Comp.

    Google Scholar 

  5. Thomas J. R. Hughes, Gerald Engel, Luca Mazzei, and Mats G. Larson. The continuous Galerkin method is locally conservative. J. Comput. Phys., 163(2):467–488, 2000.

    Article  MathSciNet  Google Scholar 

  6. Thomas J. R. Hughes, Gonzalo R. Feijóo, Luca Mazzei, and Jean-Baptiste Quincy. The variational multiscale method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg., 166(1–2):3–24, 1998.

    Article  MathSciNet  Google Scholar 

  7. Thomas J. R. Hughes and Assad A. Oberai. The variational multiscale formulation of LES with application to turbulent channel flows. In Geometry, mechanics, and dynamics, pages 223–239. Springer, New York, 2002.

    Google Scholar 

  8. Mats G. Larson and Axel Målqvist. Adaptive variational multiscale methods based on a posteriori error estimation: energy norm estimates for elliptic problems. Preprint 2004-18, Chalmers Finite Element Center, Göteborg, Sweden, www.phi.chalmers.se

    Google Scholar 

  9. Mats G. Larson and Axel Målqvist. Adaptive variational multiscale methods based on a posteriori error estimation. Proceedings of ECCOMAS 2004 conference, Jyväskylä, Finland.

    Google Scholar 

  10. J. Tinsley Oden and Kumar S. Vemaganti. Estimation of local modeling error and goaloriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms. J. Comput. Phys., 164(1):22–47, 2000.

    Article  MathSciNet  Google Scholar 

  11. A. H. Schatz and L. B. Wahlbin. Interior maximum-norm estimates for finite element methods. II. Math. Comp., 64(211):907–928, 1995.

    Article  MathSciNet  Google Scholar 

  12. Kumar S. Vemaganti and J. Tinsley Oden. Estimation of local modeling error and goaloriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids. Comput. Methods Appl. Mech. Engrg., 190(46–47):6089–6124, 2001.

    Article  MathSciNet  Google Scholar 

  13. Jinchao Xu and Aihui Zhou. Local and parallel finite element algorithms based on two-grid discretizations. Math. Comp., 69(231):881–909, 2000.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Larson, M.G., Bengzon, F., Johansson, A. (2005). Adaptive Submodeling for Linear Elasticity Problems with Multiscale Geometric Features. In: Engquist, B., Runborg, O., Lötstedt, P. (eds) Multiscale Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26444-2_8

Download citation

Publish with us

Policies and ethics