Skip to main content

Coupling PDEs and SDEs: The Illustrative Example of the Multiscale Simulation of Viscoelastic Flows

  • Conference paper
Multiscale Methods in Science and Engineering

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 44))

  • 1547 Accesses

Summary

We present an overview of models which couple a partial differential equation with a stochastic differential equation posed at each point of the physical space. Such systems in particular arise in multiscale models of complex fluids, but also in the modeling of emission and transport of photons for example. For each case, we mention the mathematical and numerical issues and indicate the main results obtained so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baranger, C., Desvillettes, L.: Study at the numerical level of the kernels of collision, coalescence and fragmentation for sprays. Preprint 2003-29 of the CMLA, (2003).

    Google Scholar 

  2. Barrett, J.W., Schwab, C., Suli, E.: Existence of Global Weak Solutions for Polymeric Flow Model, Mathematical models and methods in applied sciences, 15(3) 2005.

    Google Scholar 

  3. Bird, R., Armstrong, C., Hassager, O.: Dynamics of polymeric liquids, volume 1, Wiley (1987).

    Google Scholar 

  4. Bird, R., Curtiss, Ch., Armstrong, C., Hassager, O.: Dynamics of polymeric liquids, volume 2, Wiley (1987).

    Google Scholar 

  5. Bourgat, J.F., Le Tallec, P., Tidriri, D., Qiu, Y.: Numerical coupling of nonconservative or kinetic models with the conservative compressible Navier-Stokes equations, In: Domain decomposition methods for partial differential equations, Proc. 5th Int. SIAM Symp., Norfolk/VA (USA) 1991, 420–440 (1992).

    Google Scholar 

  6. Cancès, E., Catto, I., Gati, Y.: Mathematical analysis of a nonlinear parabolic equation arising in the modeling of non-Newtonian flows, to appear in SIAM Journal on Mathematical Analysis.

    Google Scholar 

  7. Cancès, E., Catto, I., Gati, Y., Le Bris, C., Well-posedness of a multiscale model for concentrated suspensions, submitted to SIAM Multiscale Modeling and Simulation.

    Google Scholar 

  8. Cancès, E., Le Bris, C.: Convergence to equilibrium for a multiscale model for suspensions, submitted.

    Google Scholar 

  9. Cépa, E.: Équations différentielles stochastiques multivoques, PhD thesis, Université d'Orléans (1994).

    Google Scholar 

  10. Constantin, P., Kevrekidis, I., Titi, E.S.: Remarks on a Smoluchowski equation, Discrete and Continuous Dynamical Systems, 11(1), 101–112 (2004).

    MathSciNet  MATH  Google Scholar 

  11. Constantin, P., Kevrekidis, I., Titi, E.S.: Asymptotic states of a Smoluchowski equation, Archive for Rational Mechanics and Analysis, vol 174, 3, pp 365–384, (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. Desvillettes, L.: About the modeling of complex flows by gas-particle methods. Electronic proceedings of the congress “Trends in Numerical and Physical Modeling for Industrial Multiphase Flows” Cargèse (2000).

    Google Scholar 

  13. Doi, M.: Introduction to polymer physics, Oxford Science publications (1992).

    Google Scholar 

  14. Doi, M., Edwards, SF.: The theory of polymer dynamics, Oxford science publications (1986).

    Google Scholar 

  15. E, W., Li, T., Zhang, P.: Convergence of a stochastic model for the modeling of polymeric fluids, Acta Mathematicae Applicatae Sinicae, 18(4), 529–536 (2002).

    Article  MATH  Google Scholar 

  16. E, W., Li, T., Zhang, P.: Well-posedness for the dumbbell model of polymeric fluids, Comm. Math. Phys., 248(2), 409–427 (2004).

    MathSciNet  MATH  Google Scholar 

  17. Fernández-Cara, E., Guillén, F., Ortega., R.R.: Handbook of numerical analysis, Vol. 8, chapter Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, 543–661, Amsterdam: North Holland/ Elsevier (2002).

    Google Scholar 

  18. Fleck, J.A., Cummings, J.D.: An implicit scheme for calculating nonlinear radiative transport, J. Comp. Physics 8, 315–342 (1971)

    MathSciNet  Google Scholar 

  19. Gati, Y., Analyse mathématique et simulations numériques d'un modèle de fluides complexes, Thèse de l'Ecole Nationale des Ponts et Chaussées, 2004. See also: Gati, Y. Numerical simulation of micro-macro model of concentrated suspensions, Int. J. for Numerical Methods in Fluids, Special Issue: ICFD Conference on Numerical Methods for Fluid Dynamics, to appear.

    Google Scholar 

  20. Gyöngy, I., Krylov, N.: Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Relat. Fields, 105, 143–158 (1996).

    Article  MATH  Google Scholar 

  21. Hébraud, P., Lequeux, F.: Mode coupling theory for the pasty rheology of soft glassy materials, Phys. Rev. Lett., 81(14), 2934–2937 (1998).

    Article  Google Scholar 

  22. Jourdain, B., Lelièvre, T., Le Bris, C.: Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case, Mathematical Models and Methods in Applied Sciences, 12(9), 1205–1243 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  23. Jourdain, B., Lelièvre, T., Le Bris, C.: Existence of solution for a micro-macro model of polymeric fluid: the FENE model, Journal of Functional Analysis, 209, 162–193 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  24. Jourdain, B., Lelièvre, T., Le Bris, C.: On a variance reduction technique for the micromacro simulations of polymeric fluids, Journal of non-Newtonian fluid mechanics, volume 122, pp 91–106, (2004).

    Article  MATH  Google Scholar 

  25. Jourdain, B., Lelièvre, T.: Mathematical analysis of a stochastic differential equation arising in the micro-macro modeling of polymeric fluids, Probabilistic Methods in Fluids Proceedings of the Swansea 2002 Workshop, Eds: Davies, I.M., Jacob, N., Truman, A., Hassan, O., Morgan, Y., Weatherill, N.P., 205–223 (2003).

    Google Scholar 

  26. Jourdain, B., Lelièvre, T.: Convergence of a stochastic particle approximation of the stress tensor for the FENE-P model, preprint (2004).

    Google Scholar 

  27. Keunings, R.: Simulation of viscoelastic fluid flow, In: Computer modeling for polymer processing, Ch. Tucker III, Hanser (1989).

    Google Scholar 

  28. Keunings, R.: Micro-macro methods for the multiscale simulation of viscoelastic flows using molecular models of kinetic theory, in Rheology Reviews 2004, D.M Binding and K. Walters, Eds., British Society of Rheology, pp 67–98.

    Google Scholar 

  29. Li, T., Zhang, H., Zhang, P.: Local existence for the dumbbell model of polymeric fluids, Comm. PDE, 29(5-6), 903–923 (2004).

    Article  MATH  Google Scholar 

  30. Li, T., Zhang, P., Zhou, X.: Analysis of 1+1 dimensional stochastic models of liquid crystal polymer flows, Comm. Math. Sci. 2(2), 295–316, (2004).

    MathSciNet  MATH  Google Scholar 

  31. Lozinski, A.: Spectral methods for kinetic theory models of viscoelastic fluids, PhD thesis, Ecole Polytechnique Fédérale de Lausanne (2003).

    Google Scholar 

  32. Lapeyre, B., Pardoux, E., Sentis, R.: Méthodes de Monte Carlo pour les équations de transport et de diffusion, Mathématiques et Applications, Springer-Verlag (1998).

    Google Scholar 

  33. Lelièvre, T.: Optimal error estimate for the CONNFFESSIT approach in a simple case, Computers and Fluids, 33, 815–820 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  34. Le Bris, C., Lions, P.L.: Renormalized solutions of some transport equations with partially W 1,1 velocities and applications, Annali di Matematica pura ed applicata, 183, 97–130 (2004).

    Article  MATH  Google Scholar 

  35. Lions, P.L., Masmoudi, N.: Global solutions for some Oldroyd models of non-Newtonian flows, Chin. Ann. Math., Ser. B, 21(2), 131–146 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  36. Mattingly, J.C.: The stochastically forced Navier-Stokes equations: energy estimates and phase space contraction, PhD Thesis, Princeton University (1998).

    Google Scholar 

  37. Minier, J.P.: Probabilistic approach to turbulent two-phase flows modeling and simulation: theoretical and numerical issues. Monte Carlo Methods and Appl., 7(3–4), 295–310 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  38. Minier, J.P., Peirano, E.: The pdf approcah to polydispersed turbulent two-phase flows. Physics Reports., 352(1–3), 1–214 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  39. Minier, J.P., Peirano, E., Chibbaro, S.: Weak first-and second-order numerical schemes for stochastic differential equations appearing in Lagrangian two-phase flow modeling. Monte Carlo Methods and Appl., 9(2), 93–133 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  40. N'Kaoua, T.: Solution of the nonlinear radiative transfer equations. SIAM J. Sci. Stat. Comput., 12, 505–520 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  41. N'Kaoua, T., Sentis, R.: A New Time-Discretization for the radiative transfer equations. SIAM J. Numer. Analysis, 30, 733–748 (1993).

    Article  MathSciNet  Google Scholar 

  42. Ottinger, H.C.: Stochastic processes in polymeric fluids, Springer (1996).

    Google Scholar 

  43. Owens, R.G., Phillips, T.N.: Computational rheology, Imperial College Press, (2002).

    Google Scholar 

  44. Renardy, M.: An existence theorem for model equations resulting from kinetic theories of polymer solutions, SIAM J. Math. Anal., 22, 313–327 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  45. Sentis, R.,: Monte Carlo methods in neutron and photon transport problems. Monte Carlo Methods and Appl., 7(3–4), 383–396 (2001).

    MATH  MathSciNet  Google Scholar 

  46. Suen, J.K.C., Joo, Y.L., Armstrong, R.C.: Molecular orientation effects in viscoelasticity, Annu. Rev. Fluid Mech., 34, 417–444 (2002).

    Article  MathSciNet  Google Scholar 

  47. Zhang, H., Zhang, P.: A theoretical and numerical study for the rod-like model of a polymeric fluid, J. Comp. Math., 22(2), 319–330 (2004).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jourdain, B., Le Bris, C., Lelièvre, T. (2005). Coupling PDEs and SDEs: The Illustrative Example of the Multiscale Simulation of Viscoelastic Flows. In: Engquist, B., Runborg, O., Lötstedt, P. (eds) Multiscale Methods in Science and Engineering. Lecture Notes in Computational Science and Engineering, vol 44. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26444-2_7

Download citation

Publish with us

Policies and ethics