Traumatic Brain Injury Corpus Callosum Subdural Hematoma Motor Vehicle Accident Epidural Hematoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gennarelli TA (1993) Mechanisms of brain injury. J Emerg Med 11Suppl 1:5–11PubMedGoogle Scholar
  2. 2.
    Gentry LR (1994) Imaging of closed head injury. Radiology 191:1–17PubMedGoogle Scholar
  3. 3.
    Kelly AB, Zimmerman RD, Snow RB, Gandy SE, Heier LA, Deck MD (1988) Head trauma: comparison of MR and CT-experience in 100 patients. AJNR Am J Neuroradiol 9:699–708PubMedGoogle Scholar
  4. 4.
    Alsop DC, Murai H, Detre JA, McIntosh TK, Smith DH (1996) Detection of acute pathologic changes following experimental traumatic brain injury using diffusion-weighted magnetic resonance imaging. J Neurotrauma 13:515–521PubMedGoogle Scholar
  5. 5.
    Hanstock CC, Faden AI, Bendall MR, Vink R (1994) Diffusion-weighted characterization, edema, diffusion aging differentiates ischemic tissue from traumatized tissue. Stroke 25:843–848PubMedGoogle Scholar
  6. 6.
    Barzo P, Marmarou A, Fatouros P, Hayasaki K, Corwin F (1997) Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging. J Neurosurg 87:900–907PubMedGoogle Scholar
  7. 7.
    Ito J, Marmarou A, Barzo P, Fatouros P, Corwin F (1996) Characterization of edema by diffusion-weighted imaging in experimental traumatic brain injury. J Neurosurg 84:97–103PubMedGoogle Scholar
  8. 8.
    Albensi BC, Knoblach SM, Chew BG, O’Reilly MP, Faden AI, Pekar JJ (2000) Diffusion and high resolution MRI of traumatic brain injury in rats: time course and correlation with histology. Exp Neurol 162:61–72CrossRefPubMedGoogle Scholar
  9. 9.
    Assaf Y, Beit-Yannai E, Shohami E, Berman E, Cohen Y (1997) Diffusion-and T2-weighted MRI of closed-head injury in rats: a time course study and correlation with histology. Magn Reson Imaging 15:77–85CrossRefPubMedGoogle Scholar
  10. 10.
    Gennarelli TA, Graham DI (1998) Neuropathology of the head injuries. Semin Clin Neuropsychiatry 3:160–175PubMedGoogle Scholar
  11. 11.
    Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800PubMedGoogle Scholar
  12. 12.
    Katayama Y, Becker DP, Tamura T, Ikezaki K (1990) Cellular swelling during cerebral ischaemia demonstrated by microdialysis in vivo: preliminary data indicating the role of excitatory amino acids. Acta Neurochir Suppl (Wien) 51:183–185Google Scholar
  13. 13.
    Mittl RL, Grossman RI, Hiehle JF, Hurst RW, Kauder DR, Gennarelli TA, Alburger GW (1994) Prevalence of MR evidence of diffuse axonal injury in patients with mild head injury and normal head CT findings. AJNR Am J Neuroradiol 15:1583–1589PubMedGoogle Scholar
  14. 14.
    Gentry LR, Thompson B, Godersky JC (1988) Trauma to the corpus callosum: MR features. Am J Neuroradiol 9:1129–1138PubMedGoogle Scholar
  15. 15.
    Ashikaga R, Araki Y, Ishida O (1997) MRI of head injury using FLAIR. Neuroradiology 39:239–242PubMedGoogle Scholar
  16. 16.
    Yanagawa Y, Tsushima Y, Tokumaru A, Un-no Y, Sakamoto T, Okada Y, Nawashiro H, Shima K (2000) A quantitative analysis of head injury using T2*-weighted gradient-echo imaging. J Trauma 49:272–277PubMedGoogle Scholar
  17. 17.
    Huisman TA, Sorensen AG, Hergan K, Gonzalez RG, Schaefer PW (2003) Diffusion-weighted imaging for the evaluation of diffuse axonal injury in closed head injury. J Comput Assist Tomo 27:5–11CrossRefGoogle Scholar
  18. 18.
    Liu AY, Maldjian JA, Bagley LJ, Sinson GP, et al.(1999) Traumatic brain injury: diffusion-weighted MR imaging findings. AJNR Am J Neuroradiol 20:1636–1641PubMedGoogle Scholar
  19. 19.
    Rugg-Gunn FJ, Symms MR, Barker GJ, Greenwood R, Duncan JS (2001) Diffusion imaging shows abnormalities after blunt head trauma when conventional magnetic resonance imaging is normal. J Neurol Neurosurg Psychiatry 70:530–533CrossRefPubMedGoogle Scholar
  20. 20.
    Hergan K, Schaefer PW, Sorensen AG, Gonzalez RG, Huisman TA (2002) Diffusion-weighted MRI in diffuse axonal injury of the brain. Eur Radiol 12:2536–2541PubMedGoogle Scholar
  21. 21.
    Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME (2002) Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23:794–802PubMedGoogle Scholar
  22. 22.
    Takayama H, Kobayashi M, Sugishita M, Mihara B (2000) Diffusion-weighted imaging demonstrates transient cytotoxic edema involving the corpus callosum in a patient with diffuse brain injury. Clin Neurol Neurosurg 102:135–139CrossRefPubMedGoogle Scholar
  23. 23.
    Maeda T, Katayama Y, Kawamata T, Yamamoto T (1998) Mechanisms of excitatory amino acid release in contused brain tissue: effects of hypothermia and in situ administration of CO2+ on extracellular levels of glutamate. J Neurotrauma 15:655–664PubMedGoogle Scholar
  24. 24.
    Umeda M, Yamaki T, Tanaka C, et al. (1996) Analysis of brain edema in experimental cerebral contusion using diffusion weighted MRI and ADC value. Neurotraumatology 19:79–83Google Scholar
  25. 25.
    Kawamata T, Katayama Y, Mori T, Aoyama N, Tsubokawa T (2002) Mechanisms of the mass effect of cerebral contusion: ICP monitoring and diffusion MRI study. Acta Neurochir Suppl 81:281–283Google Scholar
  26. 26.
    Kawamata T, Katayama Y, Aoyama N, Mori T (2000) Heterogeneous mechanisms of early edema formation in cerebral contusion: diffusion MRI and ADC mapping study. Acta Neurochir Suppl 76:9–12Google Scholar
  27. 27.
    Melhem ER, Jara H, Eustace S (1997) Fluid-attenuated inversion recovery MR imaging: identification of protein concentration thresholds for CSF hyperintensity. Am J Roentgenol 169:859–862Google Scholar
  28. 28.
    Singer MB, Atlas SW, Drayer BP (1998) Subarachnoid space disease: diagnosis with fluid-attenuated inversion-recovery MR imaging and comparison with gadolinium-enhanced spin-echo MR imaging-blinded reader study. Radiology 208:417–422PubMedGoogle Scholar
  29. 29.
    Dechambre SD, Duprez T, Grandin CB, Lecouvet FE, Peeters A, Cosnard G (2000) High signal in cerebrospinal fluid mimicking subarachnoid haemorrhage on FLAIR following acute stroke and intravenous contrast medium. Neuroradiology 42:608–611CrossRefPubMedGoogle Scholar
  30. 30.
    Taoka T, Yuh WT, White ML, Quets JP, Maley JE, Ueda T (2001) Sulcal hyperintensity on fluid-attenuated inversion recovery MR images in patients without apparent cerebrospinal fluid abnormality. AJR Am J Roentgenol 176: 519–524PubMedGoogle Scholar
  31. 31.
    Lin DD, Filippi CG, Steever AB, Zimmerman RD (2001) Detection of intracranial hemorrhage: comparison between gradient-echo images and b0 images obtained from diffusion-weighted echo-planar sequences. AJNR Am J Neuroradiol 22:1275–1281Google Scholar
  32. 32.
    Wiesmann M, Mayer TE, Yousry I, Medele R, Hamann GF, Bruckmann H (2002) Detection of hyperacute subarachnoid hemorrhage of the brain by using magnetic resonance imaging. J Neurosurg 96:684–689PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations