Skip to main content

Dark Matter and Pulsar Kicks from a Singlet Neutrino

  • Conference paper
  • 622 Accesses

Summary

A singlet neutrino with mass in the 2-20 keV range is a viable candidate for dark matter. If such a particle exists, it would be emitted from a supernova with an appreciable anisotropy due neutrino oscillations in a medium polarized by a strong magnetic field. An asymmetric emission of singlet neutrinos could explain the observed velocities of pulsars. Future X-ray telescopes may be able to detect a 1–10 keV photon line from the decays of the relic sterile neutrinos. In addition, one may be able to detect gravity waves from a pulsar being accelerated by neutrinos in the event of a nearby supernova.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Dodelson and L. M. Widrow, Phys. Rev. Lett. 72, 17 (1994); K. A. Olive and M. S. Turner, Phys. Rev. D 25, 213 (1982); K. Abazajian, G. M. Fuller and M. Patel, Phys. Rev. D 64, 023501 (2001); A. D. Dolgov and S. H. Hansen, Astropart. Phys. 16, 339 (2002)

    Article  ADS  Google Scholar 

  2. A. Kusenko and G. Segrè, Phys. Lett. B 396, 197 (1997). [arXiv:hepph/9701311].

    Article  ADS  Google Scholar 

  3. G. M. Fuller, A. Kusenko, I. Mocioiu, and S. Pascoli, Phys. Rev. D 68, 103002 (2003).

    Article  ADS  Google Scholar 

  4. A. G. Lyne, B. Anderson, and M. J. Salter, Mon. Not. R. Astron. Soc. 201, 503 (1982); Bailes et al., Astrophys. J. 343, L53 (1989); Formalont et al., Mon. Not. R. Astron. Soc. 258, 497 (1992); P. A. Harrison, A. G. Lyne, and B. Anderson, Mon. Not. R. Astron. Soc. 261 113 (1993); A. G. Lyne and D. R. Lorimer, Nature 369 (1994) 127.

    ADS  Google Scholar 

  5. P. A. G. Scheuer, Nature 218, 920 (1968); B. J. Rickett, Mon. Not. R. Astron. Soc. 150, 67 (1970).

    Article  ADS  Google Scholar 

  6. J. A. Galt and A. G. Lyne, Mon. Not. R. Astron. Soc. 158, 281 (1972); Slee et al, ibid. 167, 31 (1974); A. G. Lyne and F. G. Smith, Nature 298, 825 (1982); J. M. Cordes, Astrophys. J. 311, 183 (1986).

    ADS  Google Scholar 

  7. Z. Arzoumanian, D. F. Chernoff and J. M. Cordes, Astrophys. J. 568, 289 (2002).

    Article  ADS  Google Scholar 

  8. I. S. Shklovskii, Sov. Astr., 13, 562 (1970) [Astr. Zh. 46, 715 (1970)].

    ADS  Google Scholar 

  9. C. L. Fryer, Astrophys. J. 601, L175 (2004) [arXiv:astro-ph/0312265].

    Article  ADS  Google Scholar 

  10. A. Burrows and J. Hayes, Phys. Rev. Lett. 76, 352 (1996); L. Scheck, T. Plewa, H. T. Janka, K. Kifonidis and E. Mueller, Phys. Rev. Lett. 92, 011103 (2004).

    Article  ADS  Google Scholar 

  11. P. Goldreich, D. Lai, and M. Sahrling, in Unsolved Problems in Astrophysics, ed. J. N. Bahcall and J. P. Ostriker, Princeton Univ. Press, Princeton, 1996.

    Google Scholar 

  12. J. Murphy, A. Burrows, and A. Heger, astro-ph/0406521.

    Google Scholar 

  13. K. Kotake, S. Yamada, and K. Sato, astro-ph/0409244.

    Google Scholar 

  14. J. R. Gott, J. E. Gunn and J. P. Ostriker, Astrophys. J. Lett. 160, L91 (1970).

    Article  ADS  Google Scholar 

  15. E. R. Harrison and E. P. Tademaru, Astrophys. J. 201, 447 (1975).

    Article  ADS  Google Scholar 

  16. Y. Farzan, O. L. G. Peres and A. Y. Smirnov, Nucl. Phys. B 612, 59 (2001).

    Article  ADS  Google Scholar 

  17. K. S. Babu and G. Seidl, Phys. Lett. B 591, 127 (2004) [arXiv:hep-ph/0312285]. arXiv:hep-ph/0405197.

    Article  ADS  Google Scholar 

  18. A. Vilenkin, Astrophys. J. 451, 700 (1995); A. Kusenko, G. Segrè, and A. Vilenkin, Phys. Lett. B 437, 359 (1998)

    Article  ADS  Google Scholar 

  19. X. d. Shi and G. M. Fuller, Phys. Rev. Lett. 82, 2832 (1999) [arXiv:astroph/9810076].

    Article  ADS  Google Scholar 

  20. J. F. Nieves and P. B. Pal, Phys. Rev. D40 1693 (1989); J. C. D’Olivo, J. F. Nieves and P. B. Pal, ibid., 3679 (1989); S. Esposito and G. Capone, Z. Phys. C70 (1996) 55; J. C. D’Olivo, J. F. Nieves and P. B. Pal, Phys. Rev. Lett., 64, 1088 (1990); H. Nunokawa, V. B. Semikoz, A. Yu. Smirnov, and J. W. F. Valle, Nucl. Phys. B 501, 17 (1997); J. F. Nieves, Phys. Rev. D 68, 113003 (2003); J. F. Nieves, arXiv:hep-ph/0403121.

    Article  ADS  Google Scholar 

  21. M. B. Voloshin, Phys. Lett. B 209, 360 (1988); G. Lambiase, arXiv:astroph/0411242.

    Article  ADS  Google Scholar 

  22. A. Kusenko and G. Segrè, Phys. Rev. D59, 061302 (1999).

    Article  ADS  Google Scholar 

  23. M. Barkovich, J. C. D’Olivo, R. Montemayor and J. F. Zanella, Phys. Rev. D 66, 123005 (2002).

    Article  ADS  Google Scholar 

  24. M. Barkovich, J. C. D’Olivo and R. Montemayor, Phys. Rev. D 70, 043005 (2004) [arXiv:hep-ph/0402259].

    Article  ADS  Google Scholar 

  25. A. Kusenko, arXiv:astro-ph/0409521.

    Google Scholar 

  26. A. Kusenko and G. Segrè, Phys. Rev. Lett. 77, 4872 (1996). [arXiv:hepph/9606428].

    Article  ADS  Google Scholar 

  27. E.Kh. Akhmedov, A. Lanza and D.W. Sciama, Phys. Rev. D 56, 6117 (1997); D. Grasso, H. Nunokawa, and J.W.F. Valle, Phys. Rev. Lett. 81, 2412 (1998); R. Horvat, Mod. Phys. Lett. A 13, 2379 (1998); M. Barkovich, H. Casini, J. C. D’Olivo and R. Montemayor, Phys. Lett. B 506, 20 (2001); D. V. Ahluwalia-Khalilova and D. Grumiller, in preparation.

    Article  ADS  Google Scholar 

  28. K. Abazajian, G. M. Fuller and W. H. Tucker, Astrophys. J. 562, 593 (2001)

    Article  ADS  Google Scholar 

  29. L. C. Loveridge, Phys. Rev. D 69, 024008 (2004) [arXiv:astro-ph/0309362].

    Article  ADS  Google Scholar 

  30. H. J. Mosquera Cuesta, Astrophys. J. 544, L61 (2000); Phys. Rev. D 65, 061503 (2002); H. J. Mosquera Cuesta and K. Fiuza, arXiv:astro-ph/0403529.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kusenko, A. (2006). Dark Matter and Pulsar Kicks from a Singlet Neutrino. In: Klapdor-Kleingrothaus, H.V., Arnowitt, R. (eds) Dark Matter in Astro- and Particle Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26373-X_38

Download citation

Publish with us

Policies and ethics