Skip to main content

Frontiers of polarized electron scattering experiments

  • Conference paper
  • First Online:
From Parity Violation to Hadronic Structure and more
  • 239 Accesses

Abstract

Parity-violating electron scattering has developed into a precise and sensitive tool to probe the structure of weak neutral current interactions at Q 2M 2Z . Steady improvements in experimental techniques have made feasible asymmetry measurements with precision approaching 10 parts per billion and fractional accuracy of a few percent. In the future, upgrades of new facilities, new laboratories and further refinements of experimental techniques should allow us to explore new aspects of the strong and electroweak interactions. We describe some of these ideas in this article.

Research funded by US Department of Energy Grant No. DE-FG02-88R40415.A018

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.S. Kumar, P.A. Souder: Prog. Part. Nucl. Phys. 45, S333–S395 (2000), and references therein; D.H. Beck, B.R. Holstein: Int. J. Mod. Phys. E 10, 1–41 (2001)

    Article  ADS  Google Scholar 

  2. M.J. Musolf et al: Phys. Rept. 239, 1 (1994)

    Article  ADS  Google Scholar 

  3. M.J. Ramsey-Musolf: Phys. Rev. C 60, 015501 (1999)

    Article  ADS  Google Scholar 

  4. B. Pasquini, M. Vanderhaeghen: Phys. Rev. C 70, 045206 (2004)

    Article  ADS  Google Scholar 

  5. A. Afanasev, N.P. Merenkov: Phys. Rev. D 70, 073002 (2004)

    Article  ADS  Google Scholar 

  6. F. Maas et al: nucl-ex/0410013 (2004)

    Google Scholar 

  7. P.A.M. Guichon, M. Vanderhaeghen: Phys. Rev. Lett. 91, 142303 (2003); P.G. Blunden et al: Phys. Rev. Lett. 91, 142304 (2003)

    Article  ADS  Google Scholar 

  8. P.A. Souder: to be published in the proceedings of HiX2004, Marseilles, France, (2004)

    Google Scholar 

  9. J.T. Londergan, A.W. Thomas: hep-ph/0407247 (2004), and references therein

    Google Scholar 

  10. G.R. Farrar, D.R. Jackson: Phys. Rev. Lett. 43, 246 (1979)

    Article  ADS  Google Scholar 

  11. W. Melnitchouk et al: Phys. Rev. Lett. 84, 5455 (2000); W. Melnitchouk, A.W. Thomas: Phys. Lett. B 377, 11 (1996)

    Article  ADS  Google Scholar 

  12. R.L. Jaffe: private communication

    Google Scholar 

  13. S. Brodsky: In Proceedings from Jlab/Temple University HiX2000 Workshop, Philadelphia, USA, (2000)

    Google Scholar 

  14. A.D. Martin et al: Eur. Phys. J. C 35, 325 (2004)

    Article  ADS  Google Scholar 

  15. Jlab Proposal P-05-007, X. Zheng: contactperson

    Google Scholar 

  16. A. Afanasev: private communication

    Google Scholar 

  17. A.C. Caldwell: Acta Phys. Polon. B 33, 3599–3608 (2002)

    ADS  Google Scholar 

  18. M. Gorshteyn et al: Nucl. Phys. A 741, 234–248 (2004)

    Article  ADS  Google Scholar 

  19. Jlab Proposal P-05-005, P. Bosted: contactperson

    Google Scholar 

  20. K.S. Kumar et al: Mod. Phys. Lett. A 10, 2979 (1995)

    Article  ADS  Google Scholar 

  21. S.C. Bennett, C.E. Wieman: Phys. Rev. Lett. 82, 2484–2487 (1999)

    Article  ADS  Google Scholar 

  22. G.P. Zeller et al: Phys. Rev. Lett. 88, 091802 (2002)

    Article  ADS  Google Scholar 

  23. P.L. Anthony et al: Phys. Rev. Lett. 92, 181602 (2004)

    Article  ADS  Google Scholar 

  24. A. Czarnecki, W.J. Marciano: Phys. Rev. D 53, 1066 (1996); A. Czarnecki, W.J. Marciano: Int. J. Mod. Phys. A 15, 2365 (2000); J. Erler, M.J. Ramsey-Musolf: hepph/ 0409169; A. Ferroglia, G. Ossola, A. Sirlin: Eur. Phys. J. C 34, 165 (2004)

    Article  ADS  Google Scholar 

  25. D.S. Armstrong et al: Qweak Collaboration, Published in AIP Conf. Proc. 698, 172–175 (2004)

    Article  Google Scholar 

  26. A. Kurylov, M.J. Ramsey-Musolf, S. Su: Phys. Rev. D 68, 035008 (2003)

    Article  ADS  Google Scholar 

  27. D. Mack et al: in Pre-Conceptual Design Report for The Science and Experimental Equipment for the 12 GeV Upgrade of CEBAF, (2004) unpublished

    Google Scholar 

  28. K.S. Kumar: in DPF/DPB Summer Study on New Directions in High-Energy Physics, econf C960625, (1996) NEW168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this paper

Cite this paper

Kumar, K.S. (2005). Frontiers of polarized electron scattering experiments. In: Kox, S., Lhuillier, D., Maas, F., van de Wiele, J. (eds) From Parity Violation to Hadronic Structure and more. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26345-4_48

Download citation

  • DOI: https://doi.org/10.1007/3-540-26345-4_48

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25501-7

  • Online ISBN: 978-3-540-26345-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics