Skip to main content

Applications of Supermolecules — Molecular Devices and Nanotechnology

  • Chapter
Supramolecular Chemistry — Fundamentals and Applications
  • 2965 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

5.1

  1. G. Stix, “Little Big Science”, Sci. Am., 285, 32 (2001)

    CAS  Google Scholar 

  2. K.E. Drexler, “Machine-Phase Nanotechnology”, Sci. Am., 285, 74 (2001)

    CAS  Google Scholar 

  3. R.E. Smalley, “Of Chemistry, Love and Nanobots”, Sci. Am., 285, 76 (2001)

    CAS  Google Scholar 

  4. N. Mathur, “Beyond the Silicon Roadmap”, Nature, 419, 573 (2002)

    Article  CAS  Google Scholar 

  5. M. Schulz, “The End of the Road for Silicon”, Nature, 399, 729 (1999)

    Article  CAS  Google Scholar 

  6. A. Aviram, M.A. Ratner, “Molecular Rectifiers”, Chem. Phys. Lett., 29, 277 (1974)

    Article  CAS  Google Scholar 

  7. F.L. Carter, “Molecular-Level Fabrication Techniques and Molecular Electronic Devices”, J. Vac. Sci. Technol. B, 1, 959 (1983)

    Article  CAS  Google Scholar 

  8. J.S. Lindsey, “Self-Assembly in Synthetic Route to Molecular Devices — Biological Principles and Chemical Perspectives — A Review”, New. J. Chem., 15, 153 (1991)

    CAS  Google Scholar 

5.2

  1. K. Ariga, T. Kunitake, “Molecular Recognition at Air-Water and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction”, Acc. Chem. Res., 31, 371 (1988)

    Article  Google Scholar 

  2. G.A. Ozin, “Nanochemistry — Synthesis in Diminishing Dimensions”, Adv. Mater., 4, 612 (1992)

    Article  CAS  Google Scholar 

  3. P.K. Hansma, J. Tersoff, “Scanning Tunneling Microscopy”, J. Appl. Phys., 61, R1 (1987)

    Article  CAS  Google Scholar 

  4. H.G. Hansma, J.H. Hoh, “Biomolecular Imaging with Atomic-Force Microscope”, Ann. Rev. Biophys. Biomol. Struc., 23, 115 (1994)

    Article  CAS  Google Scholar 

  5. Z.F. Shao, J. Mou, D.M. Czajkowski, J. Yang, J.Y. Yuan, “Biological Atomic Force Microscopy: What is Achieved and What is Needed”, Adv, Phys., 45, 1 (1996)

    Article  CAS  Google Scholar 

  6. F.-R.F. Fan, A.J. Bard, “STM on Wet Insulators: Electrochemistry or Tunneling?”, Science, 270, 1849 (1995)

    CAS  Google Scholar 

  7. Y. Ebara, H. Ebato, K. Ariga, Y. Okahata, “Interactions of Calcium Ions with Phospholipid Membranes. Studies on π-A Isotherms and Electrochemical and Quartz-Crystal Microbalance Measurements”, Langmuir, 10, 2267 (1994)

    Article  CAS  Google Scholar 

  8. M.T. Rojas, R. Koniger, J.F. Stoddart, A.E. Kaifer, “Supported Monolayers Containing Preformed Binding Sites — Synthesis and Interfacial Binding Properties of a Thiolated β-Cyclodextrin Derivative”, J. Am. Chem. Soc., 117, 336 (1995)

    Article  CAS  Google Scholar 

  9. K. Odashima, M. Kotato, M. Sugawara, Y. Umezawa, “Voltammetric Study on a Condensed Monolayer of a Long Alkyl Cyclodextrin Derivative as a Channel Mimetic Sensing Membrane”, Anal. Chem., 65, 927 (1993)

    Article  CAS  Google Scholar 

  10. J. Homola, S.S. Yee, G. Gauglitz, “Surface Plasmon Resonance Sensors: Review”, Sens. Actuat. B, Chem., 54, 3 (1999)

    Article  Google Scholar 

  11. K. Kimura, T. Matsuba, Y. Tsujimura, M, Yokoyama, “Unsymmetrical Calix[4]arene Ionophore Silicone-Rubber Composite Membranes for High Performance Sodium Ion Sensitive Field-Effect Transistors”, Anal. Chem., 64, 2508 (1992)

    Article  CAS  Google Scholar 

  12. K. Ariga, K. Isoyama, O. Hayashida, Y. Aoyama, Y. Okahata, “A QCM Study on Adsorption of Macrocyclic Sugar-Cluster to Variously-Functionalized Monolayers”, Chem. Lett., 1007 (1998)

    Google Scholar 

  13. K. Matsuura, K. Ariga, K. Endo, Y. Aoyama, Y. Okahata, “Dynamic Analyses on Induced-Fit Gaseous Guest Binding to Organic Crystals with a Quartz-Crystal Microbalance”, Chem. Eur. J., 6, 1750 (2000)

    Article  CAS  Google Scholar 

  14. Y. Okahata, Y. Matsunobu, K. Ijiro, M. Mukae, A. Murakami, K. Makino, “Hybridization of Nuceic Acids Immobilized on a Quartz Crystal Microbalance”, J. Am. Chem. Soc., 114, 8299 (1992)

    Article  CAS  Google Scholar 

  15. T. Sato, T. Serizawa, Y. Okahata, “Binding of Influenza A Virus to Monosialoganglioside (GM3) Reconstituted in Glucosylceramide and Sphingomyelin Membranes”, Biochim. Biophys. Acta, 1285, 14 (1996)

    Article  Google Scholar 

  16. C. K. O’Sullivan, G.G. Guilbault, “Commercial Quartz Crystal Microbalances — Theory and Applications”, Biosens. Bioelectron., 14, 663 (1999)

    Article  CAS  Google Scholar 

  17. L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones, D.L. Allara, J.M. Tour, P.S. Weiss, “Are Single Molecular Wires Conducting?”, Science, 271, 1705 (1996)

    CAS  Google Scholar 

  18. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, “Conductance of a Molecular Junction”, Science, 278, 252 (1997)

    Article  CAS  Google Scholar 

  19. C. Joachim, J.K. Gimzewski, A. Aviram, “Electronics Using Hybrid-Molecular and Mono-Molecular Devices”, Nature, 408, 541 (2000)

    Article  CAS  Google Scholar 

  20. S. Weiss, “Fluorescence Spectroscopy of Single Biomolecules”, Science, 283, 1676 (1999)

    Article  CAS  Google Scholar 

  21. W.E. Moerner, M. Orrit, “Illuminating Single Molecules in Condensed Matter”, Science, 283, 1670 (1999)

    Article  CAS  Google Scholar 

  22. A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, R.M. Simmons, “Single-Molecule Biomechanics with Optical Methods”, Science, 283, 1689 (1999)

    Article  CAS  Google Scholar 

  23. T. Funatsu, Y. Harada, M. Tokunaga, K. Saito, T. Yanagida, “Imaging of Single Fluorescent Molecules and Individual ATP Turnovers by Single Myosin Molecules in Aqueous Solution”, Nature, 374, 555 (1995)

    Article  CAS  Google Scholar 

  24. H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, “Direct Observation of the Rotation of F1-ATPase”, Nature, 386, 299 (1997)

    Article  CAS  Google Scholar 

5.3

  1. R.F. Service, “Assembling Nanocircuits from the Bottom Up”, Science, 293, 782 (2001)

    Article  CAS  Google Scholar 

  2. C. Joachim, J.K. Gimzewski, A. Aviram, “Electronics Using Hybrid-Molecular and Mono-Molecular Devices”, Nature, 408, 541 (2000)

    Article  CAS  Google Scholar 

  3. J.M. Tour, “Molecular Electronics. Synthesis and Testing of Components”, Acc. Chem. Res., 33, 791 (2000)

    Article  CAS  Google Scholar 

  4. R.L. Carroll, C.B. Gorman, “The Genesis of Molecular Electronics”, Angew. Chem. Int. Ed., 41, 4379 (2002)

    Article  Google Scholar 

  5. G.S. McCarty, P.S. Weiss, “Scanning Probe Studies of Single Nanostructures”, Chem. Rev., 99, 1983 (1999)

    Article  CAS  Google Scholar 

  6. D. Feldheim, “Flipping a Molecular Switch”, Nature, 408, 45 (2000)

    Article  CAS  Google Scholar 

  7. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, “Conductance of a Molecular Junction”, Science, 278, 252 (1997)

    Article  CAS  Google Scholar 

  8. M.A. Reed, J.M. Tour, “Computing with Molecules”, Sci. Am., 282, 86 (2000)

    CAS  Google Scholar 

  9. G. Ashkenasy, D. Cahen, R. Cohen, A. Shanzer, A. Vilan, “Molecular Engineering of Semiconductor Surfaces and Devices”, Acc. Chem. Res., 35, 121 (2002)

    Article  CAS  Google Scholar 

  10. J. Park, A.N. Pasupathy, J.I. Goldsmith, C. Chang, Y. Yaish, J.R. Petta, M. Rinkoski, J.P. Sethna, H. D. Abruña, P.L. McEuen, D.C. Ralph, “Coulomb Blockade and the Kondo Effect in Single-Atom Transistors”, Nature, 417, 722 (2002)

    Article  CAS  Google Scholar 

  11. Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.W. Price Jr., A.M. Rawlett, D.L. Allara, J.M. Tour, P.S. Weiss, “Conductance Switching in Single Molecules through Conformation Changes”, Science, 292, 2306 (2001)

    Article  Google Scholar 

  12. A. Niemz, V.M. Rotello, “From Enzyme to Molecular Device. Exploring of Interdependence of Redox and Molecular Recognition”, Acc. Chem. Res., 32, 44 (1999)

    Article  CAS  Google Scholar 

  13. E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, “DNA-Templated Assembly and Electrode Attachment of a Conductive Silver Wire”, Nature, 391, 775 (1998)

    Article  CAS  Google Scholar 

  14. S. Kugimiya, T. Lazark, M. Blanchard-Desce, J.M. Lehn, “Electron Conduction across Vesicular Bilayer Membranes Induced by a Carviologen Molecular Wire”, J. Chem. Soc., Chem. Commun., 1179 (1991)

    Google Scholar 

  15. A. Tsuda, A. Osuka, “Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared”, Science, 293, 79 (2001)

    Article  CAS  Google Scholar 

  16. T.M. Swager, “The Molecular Wire Approach to Sensory Signal Amplification”, Acc. Chem. Res., 31, 201 (1998)

    Article  CAS  Google Scholar 

  17. D.T. McQuade, A.E. Pullen, T.M. Swager, “Conjugated Polymer-Based Chemical Sensors”, Chem. Rev., 100, 2537 (2000)

    Article  CAS  Google Scholar 

  18. A.G. MacDiarmid, “Synthetic Metals: A Novel Role for Organic Polymers (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2581 (2001)

    Article  CAS  Google Scholar 

  19. H. Shirakawa, “The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2575 (2001)

    Article  CAS  Google Scholar 

  20. A.J. Heeger, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture)”, Angew. Chem. Int. Ed., 40, 2591 (2001)

    Article  CAS  Google Scholar 

  21. H. Sirringhaus, N. Tessler, R.H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers”, Science, 280, 1741 (1998)

    Article  CAS  Google Scholar 

  22. S.L. Gilat, S.H. Kawai, J.M. Lehn, “Light-Triggered Electrical and Optical Switching Devices”, J. Chem. Soc., Chem. Commun., 1439 (1993)

    Google Scholar 

  23. P.G. Haydon, “Glia: Listening and Talking to the Synapse”, Nature Rev. Neurosci., 2, 185 (2001)

    Article  CAS  Google Scholar 

  24. J.L. Sessler, B. Wang, A. Harriman, “Long-Range Photoinduced Electron Transfer in an Associated But Noncovalently Linked Photosynthetic Model System”, J. Am. Chem. Soc., 115, 10418 (1993)

    Article  CAS  Google Scholar 

  25. A. Harriman, Y. Kubo, J.L. Sessler, “Molecular Recognition via Base-Pairing — Photo induced Electron-Transfer in Hydrogen-Bonded Zinc Porphyrin Benzoquinone Conjugates”, J. Am. Chem. Soc., 114, 388 (1992)

    Article  CAS  Google Scholar 

  26. K. Ogawa, Y. Kobuke, “Formation of a Giant Supramolecular Porphyrin Array by Self-Coordination”, Angew. Chem. Int. Ed., 39, 4070 (2000)

    Article  CAS  Google Scholar 

  27. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, “Individual Single-Wall Carbon Nanotubes as Quantum Wires”, Nature, 386, 474 (1997)

    Article  CAS  Google Scholar 

  28. S.J. Tans, A.R.M. Verschueren, C. Dekker, “Room-Temperature Transistor Based on a Single Carbon Nanotube”, Nature, 393, 49 (1998)

    Article  CAS  Google Scholar 

  29. T.W. Tombler, C. Zhou, L. Alexseyev, J. Kong, H. Dai, L. Lei, C.S. Jayanthi, M. Tang, S.-Y. Wu, “Reversible Electromechanical Characteristics of Carbon Nanotubes under Local-Probe Manipulation”, Nature, 405, 769 (2000)

    Article  CAS  Google Scholar 

  30. P. Avouris, “Molecular Electronics with Carbon Nanotubes”, Acc. Chem. Res., 35, 1026 (2002)

    Article  CAS  Google Scholar 

  31. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.L. Cheung, C.M. Lieber, “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing”, Science, 289, 94 (2000)

    Article  CAS  Google Scholar 

  32. Y. Luo, C.P. Collier, J.O. Jeppesen, K.A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.R. Tseng, T. Yamamoto, J.F. Stoddart, J.R. Heath, “Two-Dimensional Molecular Electronics Circuits”, Chem. Phys. Chem., 3, 519 (2002)

    CAS  Google Scholar 

  33. S.J. Tans, C. Dekker, “Potential Modulations along Carbon Nanotubes”, Nature, 404, 834 (2000)

    Article  CAS  Google Scholar 

  34. M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, “Single-Electron Transport in Ropes of Carbon Nanotubes”, Science, 275, 1922 (1997)

    Article  CAS  Google Scholar 

  35. Y. Okawa, M. Aono, “Nanoscale Control of Chain Polymerization”, Nature, 409, 683 (2001)

    Article  CAS  Google Scholar 

  36. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E.P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits”, Science, 290, 2123 (2000)

    Article  CAS  Google Scholar 

5.4

  1. D. Holten, D.F. Bocian, J.S. Lindsey, “Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays. A Guide to the Rational Design of Molecular Photonic Devices”, Acc. Chem. Res., 35, 57 (2002)

    Article  CAS  Google Scholar 

  2. A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, “Signaling Recognition Events with Fluorescent Sensors and Switches”, Chem. Rev., 97, 1515 (1997)

    Article  Google Scholar 

  3. S.R. Marder, B. Kippelen, A.K.Y. Jen, N. Peyghambarian, “Design and Synthesis of Chromophores and Polymers for Electro-Optic and Photorefractive Applications”, Nature, 388, 845 (1997)

    Article  CAS  Google Scholar 

  4. F. Hide, M.A. DiazGarcia, B.J. Schwartz, A.J. Heeger, “New Developments in the Photonic Applications of Conjugated Polymers”, Acc. Chem. Res., 30, 430 (1997)

    Article  CAS  Google Scholar 

  5. K. Kalyanasundaram, M. Grätzel, “Applications of Functionalized Transition Metal Complexes in Photonic and Optoelectronic Devices”, Coordinat. Chem. Rev., 177, 347 (1998)

    Article  CAS  Google Scholar 

  6. U. Mitschke, P. Bauerle, “The Electroluminescence of Organic Materials”, J. Mater. Chem., 10, 1471 (2000)

    Article  CAS  Google Scholar 

  7. J. Otsuki, M. Tsujino, T. Iizaki, K. Araki, M. Seno, K. Takatera, T. Watanabe, “Redox-Responsive Molecular Switch for Intramolecular Energy Transfer”, J. Am. Chem. Soc., 119, 7895 (1997)

    Article  CAS  Google Scholar 

  8. A.P. de Silva, H.Q.N. Gunaratne, C.P. Mccoy, “A Molecular Photonic AND Gate Based on Fluorescent Signaling”, Nature, 364, 42 (1993)

    Article  Google Scholar 

  9. T. Gunnlaugsson, D. A. M. Dónaill, D. Parker, “Lanthanide Macrocyclic Quinolyl Conjugates as Luminescent Molecular-Level Devices”, J. Am. Chem. Soc., 123, 12866 (2001)

    Article  CAS  Google Scholar 

  10. E. Murguly, T.B. Norsten, N.R. Branda, “Nondestructive Data Processing Based on Chiroptical 1,2-Diethienylethene Photochromes”, Angew. Chem. Int. Ed., 40, 1752 (2001)

    Article  CAS  Google Scholar 

  11. P.K.H. Ho, D.S. Thomas, R.H. Friend, N. Tessler, “All-Polymer Optoelectronic Devices”, Science, 285, 233 (1999)

    Article  CAS  Google Scholar 

  12. P.K.H. Ho, J.-S. Kim, J.H. Burroughes, H. Becker, S.F.Y. Li, T.M. Brown, F. Cacialli, R.H. Friend, “Molecular-Scale Interface Engineering for Polymer Light-Emitting Diodes”, Nature, 404, 481 (2000)

    Article  CAS  Google Scholar 

  13. D.M. Kaschak, J.T. Lean, C.C. Waraksa, G.B. Saupe, H. Usami, T.E. Mallouk, “Photoinduced Energy and Electron Transfer Reactions in Lamellar Polyanion/Polycation Thin Films: Toward an Inorganic Leaf”, J. Am. Chem. Soc., 121, 3435 (1999)

    Article  CAS  Google Scholar 

5.5

  1. A.P. de Silva, N.D. McClenaghan, “Proof-of-Principle of Molecular-Scale Arithmetic”, J. Am. Chem. Soc., 122, 3965 (2000)

    Article  CAS  Google Scholar 

  2. A. Credi, V. Balzani, S.J. Langford, J.F. Stoddart, “Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine”, J. Am. Chem. Soc., 119, 2679 (1997)

    Article  CAS  Google Scholar 

  3. J.C. Ellenbogen, J.C. Love, “Architectures for Molecular Electronic Computers: 1. Logic Structures and an Adder Designed fromMolecular Electronic Diodes”, Proc. IEEE, 88, 386 (2000)

    Article  CAS  Google Scholar 

  4. C.P. Collier, E.W. Wong, M. Belohradsky, F.M. Raymo, J.F. Stoddart, P.J. Kuekes, R.S. Williams, J.R. Heath, “Electronically Configurable, Molecular-Based Logic Gates”, Science, 285, 391 (1999)

    Article  CAS  Google Scholar 

  5. M. Cavallini, F. Biscarini, S. León, F. Zerbetto, G. Bottari, D.A. Leigh, “Information Storage Using Supramolecular Surface Patterns”, Science, 299, 531 (2003)

    Article  CAS  Google Scholar 

  6. C.P. Collier, G. Mattersteig, E.W. Wong, Y. Luo, K. Beverly, J. Sampaio, F.M. Raymo, J.F. Stoddart, J.P. Heath, “A [2]Catenane-Based Solid State Electronically Reconfigurable Switch”, Science, 289, 1172 (2000)

    Article  CAS  Google Scholar 

  7. L.M. Adleman, “Molecular Computing of Solutions to Combinatorial Problems”, Science, 266, 1021 (1994)

    CAS  Google Scholar 

  8. L.M. Adleman, “Computing with DNA”, Sci. Am., 279, 54 (1998)

    CAS  Google Scholar 

  9. G. Paum, “Computing with Membranes”, J. Comput. Sys. Sci., 61, 108 (2000)

    Article  Google Scholar 

  10. Q. Liu, L. Wang, A.G. Frutos, A.E. Condon, R.M. Corn, L.M. Smith, “DNA Computing on Surfaces”, Nature, 403, 175 (2000)

    Article  CAS  Google Scholar 

  11. R.S. Braich, N. Chelyapov, C. Johnson, P.W.K. Rothemund, L. Adleman, “Solution of a 20-Variable 3-SAT Problem on a DNA Computer”, Science, 296, 499 (2002)

    Article  CAS  Google Scholar 

  12. D. Faulhammer, A.R. Cukras, R.J. Lipton, L.F. Landweber, “Molecular Computation: RNA Solutions to Chess Problems”, Proc. Natl. Acad. Sci. USA, 97, 1385 (2000)

    Article  CAS  Google Scholar 

  13. A. Saghatelian, N.H. Völcher, K.M. Guckian, V. S.-Y. Lin, M.R. Ghadiri, “DNA-Based Photonic Logic Gates: AND, NAND, and INHIBIT”, J. Am. Chem. Soc., 125, 346 (2003)

    Article  CAS  Google Scholar 

  14. Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, E. Shapiro, “DNA Molecule Provides a ComputingMachine with Both Data and Fuel”, Proc. Natl. Acad. Sci. USA, 100, 2191 (2003)

    Article  CAS  Google Scholar 

  15. K. Sakamoto, H. Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, M. Hagiya, “Molecular Computation by DNA Hairpin Formation”, Science, 288, 1223 (2000)

    Article  CAS  Google Scholar 

5.6

  1. R. Ballardini, V. Balzani, M.T. Gandolfi, L. Prodi, M. Venturi, D. Philp, H.G. Ricketts, J.F. Stoddart, “A Photochemically Driven Molecular Machine”, Angew. Chem. Int. Ed., 32, 1301 (1993)

    Article  Google Scholar 

  2. P.R. Ashton, R. Ballardini, V. Balzani, S.E. Boyd, A. Credi, M.T. Gandolfi, M. Gomez Lopez, S. Iqbal, D. Philp, J.A. Preece, L. Prodi, H.G. Ricketts, J.F. Stoddart, M.S. Tolley, M. Venturi, A.J.P. White, D.J. Williams, “Simple Mechanical Molecular and Supramolecular Machines: Photochemical and Electrochemical Control of Switching Processes”, Chem. Eur. J., 3, 152 (1997)

    CAS  Google Scholar 

  3. V. Balzani, A. Credi, F.M. Raymo, J.F. Stoddart, “Artificial Molecular Machines”, Angew. Chem. Int. Ed., 39, 3348 (2000)

    Article  CAS  Google Scholar 

  4. V. Amendola, L. Fabbrizzi, C. Mangano, P. Pallavicini, “Molecular Machines Based on Metal Ion Translocation”, Acc. Chem. Res., 34, 488 (2001)

    Article  CAS  Google Scholar 

  5. C.A. Shalley, “Of Molecular Gyroscopes, Matroshka Dolls, and Other “Nano”-Toys”, Angew. Chem. Int. Ed., 41 1513 (2002)

    Article  Google Scholar 

  6. M. Barboiu, J.-M. Lehn, “Dynamic Chemical Devices: Modulation of Contraction/ Extension Molecular Motion by Coupled-Ion Binding/pH Change-Induced Structural Switching”, Proc. Natl. Acad. Sci. USA, 99, 5201 (2002)

    Article  CAS  Google Scholar 

  7. J.K. Gimzewski, C. Joachim, R.R. Schlittler, V. Langlais, H. Tang, I. Johannsen, “Rotation of a Single MoleculeWithin a Supramolecular Bearing”, Science, 281, 531 (1998)

    Article  CAS  Google Scholar 

  8. J.K. Gimzewski, C. Joachim, “Nanoscale Science of Single Molecules Using Local Probes”, Science, 283, 1684 (1999)

    Article  Google Scholar 

  9. B.L. Feringa, “In Control of Motion: From Molecular Switches to Molecular Motors”, Acc. Chem. Res., 34, 504 (2001)

    Article  CAS  Google Scholar 

  10. N. Koumura, E.M. Geertsema, M.B. van Gelder, A. Meetsma, B.L. Feringa, “Second Generation Light-Driven Molecular Motors. Unidirectional Rotation Controlled by a Single Stereogenic Center with Near-Perfect Photoequilibria and Acceleration of the Speed of Rotation by Structural Modification”, J. Am. Chem. Soc., 124, 5037 (2002)

    Article  CAS  Google Scholar 

  11. R.A. vanDelden, N. Koumura, N. Harada, B.L. Feringa, “Unidirectional RotaryMotion in a Liquid Crystalline Environment: Color Tuning by aMolecularMotor”, Proc. Natl. Acad. Sci. USA, 99, 3945 (2002)

    Google Scholar 

  12. N. Koumura, R.W.J. Zijlstra, R.A. van Delden, N. Harada, B.L. Feringa, “Light-Driven Monodirectional Molecular Rotor”, Nature, 401, 152 (1999)

    Article  CAS  Google Scholar 

  13. T.R. Kelly, H. de Silva, R.A. Silva, “Unidirectional Rotary Motion in a Molecular System”, Nature, 401, 150 (1999)

    Article  CAS  Google Scholar 

  14. T.R. Kelly, “Progress toward a Rationally Designed Molecular Motor”, Acc. Chem. Res., 34, 514 (2001)

    Article  CAS  Google Scholar 

  15. C.A. Schalley, K. Beizai, F. Vögtle, “On theWay to Rotaxane-Based Molecular Motors: Studies in Molecular Mobility and Topological Chirality”, Acc. Chem. Res., 34, 465 (2001)

    Article  CAS  Google Scholar 

  16. V. Balzani, M. Gómez-López, J.F. Stoddart, “Molecular Machines”, Acc. Chem. Res., 31, 405. (1998)

    Google Scholar 

  17. A. Harada, “Cyclodextrin-Based Molecular Machines”, Acc. Chem. Res., 34, 456 (2001)

    Article  CAS  Google Scholar 

  18. K. Kinbara, T. Aida, “Toward Intelligent Molecular Machines: Directed Motions of Biological and Artificial Molecules and Assemblies”, Chem. Rev., 105, 1377 (2005)

    Article  CAS  Google Scholar 

  19. H. Shigekawa, K. Miyake, J. Sumaoka, A. Harada, M. Komiyama, “The Molecular Abacus: STM Manipulation of Cyclodextrin Necklace”, J. Am. Chem. Soc., 122, 5411 (2000)

    Article  CAS  Google Scholar 

  20. R.H. Baughman, C. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, “Carbon Nanotube Actuators”, Science, 284, 1340 (1999)

    Article  CAS  Google Scholar 

  21. P. Kim, C.M. Lieber, “Nanotube Nanotweezers”, Science, 286, 2148 (1999)

    Article  CAS  Google Scholar 

  22. O. Inganäs, I. Lundstrüm, “Carbon Nanotube Muscles”, Science, 284, 1281 (1999)

    Article  Google Scholar 

  23. J. Fritz, M.K. Baller, H.P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, C. Gerber, J.K. Gimzewski, “Translating Biomolecular Recognition into Nanomechanics”, Science, 288, 316 (2000)

    Article  CAS  Google Scholar 

  24. C.M. Niemeyer, M. Adler, “Nanomechanical Devices Based on DNA”, Angew. Chem. Int. Ed., 41, 3779 (2002)

    Article  CAS  Google Scholar 

  25. C. Mao, W. Sun, Z. Shen, N.C. Seeman, “A Nanomechanical Device Based on the B-Z Transition of DNA”, Nature, 397, 144 (1999)

    Article  CAS  Google Scholar 

  26. K. Ariga, Y. Terasaka, D. Sakai, H. Tsuji, J. Kikuchi, “Piezoluminescence Based on Molecular Recognition by Dynamic Cavity Array of Steroid Cyclophanes at the Air-Water Interface”, J. Am. Chem. Soc., 122, 7835 (2000)

    Article  CAS  Google Scholar 

  27. K. Ariga, T. Nakanishi, H. Tsuji, D. Sakai, J. Kikuchi, “Piezoluminescence as the Air-Water Interface through Dynamic Molecular Recognition Driven by Lateral Pressure Application”, Langmuir, 21, 976 (2005)

    Article  CAS  Google Scholar 

5.7

  1. H. Kuhn, “Electron-Transfer in Monolayer Assemblies”, Pure Appl. Chem., 51, 341 (1979)

    CAS  Google Scholar 

  2. P.S. Vincett, G.G. Roberts, “Electrical and Photo-Electrical Transport Properties of Langmuir-Blodgett Films and a Discussion of Possible Device Application”, Thin Solid Films, 68, 135 (1980)

    Article  CAS  Google Scholar 

  3. T. Ito, I. Yamazaki, N. Ohta, “External Electric Field Effect on Interlayer Vectorial Electron Transfer from Photoexcited Oxacarbocyanine to Viologen in Langmuir-Blodgett Films”, Chem. Phys. Lett., 277, 125 (1997)

    Article  CAS  Google Scholar 

  4. K. Naito, A. Miura, “Photogenerated Charge Storage in Hetero-Langmuir-Blodgett Films”, J. Am. Chem. Soc., 115, 5185 (1993)

    Article  CAS  Google Scholar 

  5. T. Cassagneau, T.E. Mallouk, J.H. Fendler, “Layer-by-Layer Assembly of Thin Film Zener Diodes from Conducting Polymers and CdSe Nanoparticles”, J. Am. Chem. Soc., 120, 7848 (1998)

    Article  CAS  Google Scholar 

  6. A. Wu, D. Yoo, J.K. Lee, M.F. Rubner, “Solid-State Light-Emitting Devices Based on the Tris-ChelatedRuthenium(II) Complex: 3.High EfficiencyDevices via a Layer-by-Layer Molecular-Level Blending Approach”, J. Am. Chem. Soc., 121, 4883 (1999)

    Article  CAS  Google Scholar 

  7. M. Fujihira, K. Nishiyama, H. Yamada, “Photoelectrochemical Responses of Optically Transparent Electrodes Modified with Langmuir-Blodgett Films Consisting of Surfactant Derivatives of Electron-Donor, Acceptor and SensitizerMolecules”, Thin Solid Films, 132, 77 (1985)

    Article  CAS  Google Scholar 

  8. M. Fujihira, M. Sakomura, “Photoinduced Intramolecular Electron-Transfer Across Monolayers Consisting of Linear A-S-D Triad Amphiphilic Molecules”, Thin Solid Films, 179, 471 (1989)

    Article  CAS  Google Scholar 

  9. M. Fujihira, H. Yamada, “Molecular Photodiodes Consisting of Unidirectionally Oriented Amphipathic Acceptor Sensitized Donor Triads”, Thin Solid Films, 160, 125 (1988)

    Article  CAS  Google Scholar 

  10. H. Tachibana, T. Nakamura, M. Matsumoto, H, Komizu, E. Manda, H. Mino, A. Yase, Y. Kawabata, “Photochemical Switching in Conductive Langmuir-Blodgett Films”, J. Am. Chem. Soc., 111, 3080 (1989)

    Article  CAS  Google Scholar 

  11. I. Yamazaki, N. Ohta, “Photochemistry in LB Films and Its Application to Molecular Switching Devices”, Pure Appl. Chem., 67, 209 (1995)

    CAS  Google Scholar 

  12. I. Yamazaki, S. Okazaki, T. Minami, N. Ohta, “Optically Switching Parallel Processors by Means of Langmuir-Blodgett Multilayer Films”, Appl. Opt., 33, 7561 (1994)

    Article  CAS  Google Scholar 

  13. W.B. Lin, S. Yitzchaik, W.P. Lin, A. Malik, M.K. Durbin, A.G. Richter, G.K. Wong, P. Dutta, T.J. Marks, “New Nonlinear-Optical Materials — Expedient Topotactic Self-Assembly of Acentric Chromophoric Superlattices”, Angew. Chem. Int. Ed., 34, 1497 (1995)

    Article  CAS  Google Scholar 

  14. L.R. Dalton, A.W. Harper, R. Ghosn, W.H. Steier, M. Ziari, H. Fetterman, Y. Shi, R.V. Mustacich, A.K.Y. Jen, K.J. Shea, “Synthesis and Processing of Improved Organic Second-Order Nonlinear Optical Materials for Application in Photonics”, Chem. Mater., 7, 1060 (1995)

    Article  CAS  Google Scholar 

5.8

  1. R. Dagami, “NASA Goes NANO”, Chem. Eng. News, Feb 28th, 36 (2000)

    Google Scholar 

  2. R. Dagami, “NanoSpace 2000: Melding Two Worlds”, Chem. Eng. News, Feb 28th, 39 (2000)

    Google Scholar 

  3. G. Musser, “The Spirit of Exploration”, Sci. Am., 290, 52 (2004)

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Applications of Supermolecules — Molecular Devices and Nanotechnology. In: Supramolecular Chemistry — Fundamentals and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26185-0_5

Download citation

Publish with us

Policies and ethics