Skip to main content

Part of the book series: Impact Studies ((IMPACTSTUD))

Abstract

Rocks shocked by asteroid or comet impact events can be made more porous by the shock volatilization of minerals, and they can be fractured by the intense heat and pressures of impact. New spaces within the rock provide access points and surfaces for the growth of microbial communities, illustrating an example of how shock metamorphism can generate new habitats for microbial colonization. We review data on the colonization of shocked gneiss from the Haughton impact structure by phototrophs and heterotrophs. Shocked rocks can preferentially trap water and protect against wind-induced desiccation. The interior of shocked rocks is often warmer than the air temperature, and protects against ultraviolet radiation. Because impact events are a ubiquitous process on solid planetary surfaces, the shocked-rock habitat may be important on other planets, and it may have been important on the early Earth when primitive microorganisms lived under a much higher impact flux than today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bouchard MA (1989) L’histoire naturelle du Cratere du Nouveau-Quebec. Collection Environment et géologie, 7. Départment de géologie, Université de Montréal, 420 pp

    Google Scholar 

  • Büdel B, and Wessels DCJ, 1991 Rock inhabiting blue-green algae/cyanobacteria from hot arid regions. Algological Studies 64: 385–398

    Google Scholar 

  • Cabrol NA, Grin EA (1995) A morphological view on potential niches for exobiology on Mars. Planetary and Space Sciences 43: 179–188

    Article  Google Scholar 

  • Chyba CF, Owen, IP, Ip WH (1994) Impact delivery of volatiles and organic molecules to Earth. In: Gehrels (ed) Hazards due to comets and asteroids, University of Arizona Press, Arizona, pp 9–58

    Google Scholar 

  • Cockell CS, Horneck G (2001) The history of the UV radiation climate of the Earth — Theoretical and space-based observations. Photochemistry and Photobiology 73: 447–451

    Article  Google Scholar 

  • Cockell CS, Lee P, Hildalgo L, Schuerger A, Stokes D, Jones J (2001) Microbiology and vegetation of micro-oases and polar desert, Haughton Impact Crater, Devon Island, Nunavut, Canada. Arctic, Alpine and Antarctic Research 33: 306–318

    Article  Google Scholar 

  • Cockell CS, Lee P, Osinski G, Horneck G, Broady P (2002) Impact-induced microbial endolithic habitats. Meteoritics and Planetary Sciences 37: 1287–1298

    Google Scholar 

  • Cockell CS, McKay CP, Omelon C (2003a) Polar endoliths — an anticorrelation of climatic extremes and microbial biodiversity. International Journal of Astrobiology 1: 305–310

    Article  Google Scholar 

  • Cockell CS, Osinski G, Lee P (2003b) The impact crater as a habitat — effects of impact processing of target materials. Astrobiology 3: 181–191

    Article  Google Scholar 

  • Cremer H, Wagner B (2003) The diatom flora in the ultra-oligotrophic Lake El’gygytgyn, Chukotka. Polar Biology 26: 105–114

    Google Scholar 

  • Ehling-Shulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photo-protective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. Journal of Bacteriology 179: 1940–1945

    Google Scholar 

  • Fike DA, Cockell CS, Pearce D, Lee P (2003) Heterotrophic microbial colonization of the interior of impact-shocked rocks from Haughton impact structure, Devon Island, Nunavut, Canadian High Arctic. International Journal of Astrobiology 1: 311–323

    Article  Google Scholar 

  • Friedmann EI (1977) Microorganisms in antarctic desert rocks from dry valleys and Dufek Massif. Antarctic Journal of the United States XII: 26–30

    Google Scholar 

  • Friedmann EI (1980) Endolithic microbial life in hot and cold deserts. Origins of Life and Evolution of the Biosphere 10: 223–235

    Article  Google Scholar 

  • Frisch T, Thorsteinsson R (1978) Haughton astrobleme: a mid-Cenozoic impact crater Devon Island, Canadian Arctic Archipelago. Arctic 31: 108–124

    Google Scholar 

  • Garcia-Pichel F, Sherry ND, Castenholz RW (1992) Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochemistry and Photobiology 56: 17–23

    Google Scholar 

  • Gibson RL, Reimold WU (2001) The Vredefort impact structure, South Africa. Memoir 92, Council for Geoscience, Geological Survey of South Africa, Pretoria. 111 pp

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Petrology 51: 475–478

    Google Scholar 

  • Gronlund T, Lortie G, Guilbault JP, Bouchard MA, Saanisto M (1990) Diatoms and arcellaceans from Lac du Cratere du Nouveau-Quebec, Ungava, Quebec, Canada. Canadian Journal of Botany 68: 1187–1200

    Article  Google Scholar 

  • Horneck G, Rettberg P, Rabbow E, Strauch W, Seckmeyer G, Facius R, Reitz G, Strauch K, Schott JU (1996) Biological UV dosimetry of solar radiation for different simulated ozone column thicknesses. Journal of Photochemistry and Photobiology B: Biology 32: 189–196

    Article  Google Scholar 

  • Jessberger EK (1988) 40Ar-39Ar dating of the Haughton impact structure. Meteoritics 23: 233–234

    Google Scholar 

  • Littler MM, Littler DS, Blair SM, Norris JN (1986) Deep-water plant communities from an uncharted seamount off San Salvador Island, Bahamas: distribution, abundance and primary production. Deep-Sea Research 33: 881–892

    Article  Google Scholar 

  • McCarville P, Crossey LJ (1996) Post-impact hydrothermal alteration of the Manson impact structure. In: Koeberl C, Anderson RR (eds) The Manson Impact Structure, Iowa: Anatomy of an Impact Crater, Geological Society of America Special Paper 302, Denver, Colorado, USA, pp 347–376

    Google Scholar 

  • McKay CP, Davis WL (1991) The duration of liquid water habitats on Mars. Icarus 90: 214–221

    Article  Google Scholar 

  • McKay CP, Friedmann EI (1985) The cryptoendolithic microbial environment in the Antarctic cold desert: temperature variations in nature. Polar Biology 4: 19–25

    Article  Google Scholar 

  • Melosh H J (1989) Impact cratering. A geologic process. Oxford University Press, 245 pp

    Google Scholar 

  • Metzler A, Ostertag R, Redeker HJ, Stöffler D (1988) Composition of the crystalline basement and shock metamorphism of crystalline and sedimentary target rocks at the Haughton Impact Crater, Devon Island, Canada. Meteoritics 23: 197–207

    Google Scholar 

  • Newsom HE (1980) Hydrothermal alteration of impact melt sheets with implications for Mars. Icarus 44: 207–216

    Article  Google Scholar 

  • Newsom HE, Graup G, Sewards T, Keil K (1986) Fluidization and hydrothermal alteration of the suevite deposit at the Ries crater, West Germany, and implications for Mars. Journal of Geophysical Research 91: E239–E251

    Article  Google Scholar 

  • Newsom HE, Brittelle GE, Hibbitts CA, Crosse LJ, Kudo AM (1996) Impact crater-lakes on Mars. Journal of Geophysical Research 101: 14,951–14,955

    Article  Google Scholar 

  • Nienow JA, McKay CP, Friedmann EI (1988) The cryptoendolithic microbial environment in the Ross Desert of Antarctica: light in the photosynthetically active region. Microbial Ecology 16: 271–289

    Article  Google Scholar 

  • Osinski GR, Spray JG, Lee P (2001) Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: generation of a transient, warm, wet oasis. Meteoritics and Planetary Sciences 36: 731–745

    Google Scholar 

  • Osinski GR, Spray JG (2001) Impact-generated carbonate melts: evidence from the Haughton structure, Canada. Earth and Planetary Science Letters 194: 17–29

    Article  Google Scholar 

  • Quesada A, Vincent WF, Lean DRS (1999) Community and pigment structure of arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbial Ecology 28: 315–323

    Google Scholar 

  • Rathbun JA, Squyres SW (2002) Hydrothermal systems associated with Martian impact craters. Icarus 157: 362–372

    Article  Google Scholar 

  • Raven JA, Kübler JE, Beardall J (2000) Put out the light, and then put out the light. Journal of the Marine Biology Association of the UK 80: 1–25

    Article  Google Scholar 

  • Redeker HJ, Stöffler D (1988). The allochthonous polymict breccia layer of the Haughton impact crater, Devon Island, Canada. Meteoritics 23: 185–196

    Google Scholar 

  • Schoeman FR, Ashton PJ (1982) The diatom flora of the Pretoria Salt Pan, Transvaal, Republic of South Africa. Bacillaria 5: 63–99

    Google Scholar 

  • Scott DH, Rice JW, Dohm JM (1991) Martian paleolakes and waterways: exobiological implications. Origins of Life and Evolution of the Biosphere 21: 189–198

    Article  Google Scholar 

  • Svoboda J, Freedman B (1981) Ecology of a high arctic lowland oasis Alexandra Fiord (78°53′N, 75°55′W), Ellesmere Island, NWT, Canada. University of Toronta, Department of Botany, Toronto, Canada. 268 p

    Google Scholar 

  • Tang EPY, Vincent WF (1999) Strategies of thermal adaptation by high latitude cyanobacteria. New Phytologist 142: 315–323

    Article  Google Scholar 

  • Walker BD, Peters TW (1977) Soils of the Truelove lowland and plateau. In: Bliss LC (ed) Truelove Lowland, Devon Island, Canada: A high arctic ecosystem. Edmonton: University of Alberta Press, pp 31–62

    Google Scholar 

  • Wierzchos J, Ascaso C, Sancho LG, and Green A (2003) Iron-rich diagenetic minerals are biomarkers of microbial activity in antarctic rocks. Geomicrobiology Journal 20: 15–24

    Article  Google Scholar 

  • Zurcher L, Kring DA (2004) Post-impact hydrothermal alteration in the Yaxcopoil-1 hole, Chicxulub impact structure, Mexico. Meteoritics and Planetary Science 39: 1199–1221

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cockell, C.S., Fike, D.A., Osinski, G.R., Lee, P. (2006). Geomicrobiology of Impact-Altered Rocks. In: Cockell, C., Gilmour, I., Koeberl, C. (eds) Biological Processes Associated with Impact Events. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-25736-5_2

Download citation

Publish with us

Policies and ethics