Skip to main content

Intersecting line segments, ray shooting, and other applications of geometric partitioning techniques

  • Conference paper
  • First Online:
SWAT 88 (SWAT 1988)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 318))

Included in the following conference series:

Abstract

We present a variety of applications of certain techniques, based on partition trees, that were originally developed for range searching problems. Our results are obtained by enhancing and extending these techniques, and include: (i) An O(n 4/3+δ+k)-time (for any δ>0), O(n)-space randomized algorithm for finding all k intersections of n line segments in the plane (we can count the number of these intersections in O(n 4/3+δ) time and linear space). (ii) Preprocessing a collection of n (possibly intersecting) segments in the plane so that, given any query ray, we can find quickly the first segment it hits. Other applications concern “implicit” point location, hidden surface removal in three dimensions, polygon placement queries, and problems involving overlapping planar maps. We also present several efficient algorithms involving the analysis of the connectivity and other useful properties of arrangements of line segments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Chazelle, Reporting and counting segment intersections, J. Computer Systems Sciences 32 (1986) pp. 156–182.

    Google Scholar 

  2. B. Chazelle, Polytope range searching and integral geometry, Proc. 28th Symp. on Foundations of Computer Science, 1987, pp. 1–10.

    Google Scholar 

  3. B. Chazelle, Tight bounds on the stabbing number of spanning trees in Euclidean space, in preparation.

    Google Scholar 

  4. B. Chazelle and H. Edelsbrunner, An optimal algorithm for intersecting line segments in the plane, Tech. Rept. CS-TR-148-88, Comp. Sci. Dept., Princeton University, April 1988.

    Google Scholar 

  5. B. Chazelle and L. Guibas, Visibility and intersection problems in plane geometry, Proc. 1st ACM Symposium on Computational Geometry 1985, pp. 135–146.

    Google Scholar 

  6. K. Clarkson, New applications of random sampling in computational geometry, Discrete Comput. Geom. 2 (1987) pp. 195–222.

    Google Scholar 

  7. K. Clarkson, Applications of random sampling in computational geometry, II, Proc. 4th ACM Symp. on Computational Geometry, 1988.

    Google Scholar 

  8. K. Clarkson, R. Tarjan and C. Van Wyk, A fast Las Vegas algorithm for triangulating a simple polygon, Proc. 4th ACM Symp. on Computational Geometry, 1988.

    Google Scholar 

  9. R. Cole and M. Sharir, Visibility problems for polyhedral terrains, Tech. Rept. 266, Comp. Sci. Dept., Courant Institute, 1986.

    Google Scholar 

  10. R. Cole, M. Sharir and C. Yap, On k-hulls and related problems, SIAM J. Computing 16 (1987) pp. 61–77.

    Google Scholar 

  11. F. Devai, Quadratic bounds for hidden line elimination, Proc. 2nd ACM Symp. on Computational Geometry, 1986, pp. 269–275.

    Google Scholar 

  12. D. Dobkin and H. Edelsbrunner, Space searching for intersecting objects, J. of Algorithms 8 (1987), pp. 348–361.

    Google Scholar 

  13. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer Verlag, Heidelberg, 1987.

    Google Scholar 

  14. H. Edelsbrunner and L. Guibas, Topologically sweeping an arrangement, Proc. 18th Symp. on Theory of Computing, 1986, pp. 389–403.

    Google Scholar 

  15. H. Edelsbrunner, L. Guibas, J. Hershberger, R. Seidel, M. Sharir, J. Snoeyink and E. Welzl, Implicitly representing arrangements of lines and of segments, Proc. 4th ACM Symp. on Computational Geometry, 1988.

    Google Scholar 

  16. H. Edelsbrunner, L. Guibas and M. Sharir, The complexity of many faces in arrangements of lines and of segments, Proc. 4th ACM Symp. on Computational Geometry, 1988.

    Google Scholar 

  17. H. Edelsbrunner and E. Welzl, Halfplanar range search in linear space and O(n 0.695) query time, Inform. Process. Lett. 23 (1986) pp. 289–293.

    Google Scholar 

  18. L. Guibas, J. Hershberger, D. Leven, M. Sharir and R. Tarjan, Linear time algorithms for visibility and shortest path problems for triangulated simple polygons, Algorithmica 2 (1987) pp. 209–233.

    Google Scholar 

  19. L. Guibas, M. Sharir and S. Sifrony, On the general motion planning problem with two degrees of freedom, Proc. 4th ACM Symp. on Computational Geometry, 1988.

    Google Scholar 

  20. L. Guibas and F. Yao, On translating a set of rectangles, in Advances in Computer Research, Vol. 1 (F.P. Preparata, ed.), pp. 61–77.

    Google Scholar 

  21. D. Haussler and E. Welzl, Epsilon nets and simplex range queries, Discrete Comput. Geom. 2 (1987) pp. 127–151.

    Google Scholar 

  22. K. Kedem, R. Livne, J. Pach and M. Sharir, On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles, Discrete Comput. Geom. 1 (1986) pp. 59–71.

    Google Scholar 

  23. D. Leven and M. Sharir, Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams, Discrete Comput. Geom. 2 (1987) pp. 9–31.

    Google Scholar 

  24. H. Mairson and J. Stolfi, Reporting and couting intersections between two sets of line segments, Theoretical Foundations of Computer Graphics and CAD, R. Earnshaw, Ed.), NATO ASI Series, Vol. F-40, Springer-Verlag, Berlin 1988, pp. 307–325.

    Google Scholar 

  25. M. McKenna, Worst case optimal hidden surface removal, ACM Trans. Graphics 6 (1987) pp. 19–28.

    Google Scholar 

  26. K. Mehlhorn, Data Structures and Algorithms 3: Multidimensional Searching and Computational Geometry, Springer-Verlag, Heidelberg, Germany 1984.

    Google Scholar 

  27. R. Pollack, M. Sharir and S. Sifrony, Separating two simple polygons by a sequence of translations, Disrete Comput. Geom. 3 (1988) pp. 123–136.

    Google Scholar 

  28. F.P. Preparata, A note on locating a set of points in a planar subdivision, SIAM J. Computing 8 (1979) pp. 542–545.

    Google Scholar 

  29. P. Rosenstiehl, Grammaires acycliques de zigzags du plan, manuscript, 1987.

    Google Scholar 

  30. H. Samet, Hierarchical representations of collections of small rectangles, Tech. Rept. CS-TR-1967, Comp. Science Department, University of Maryland, January 1988.

    Google Scholar 

  31. A. Schmitt, H. Muller and W. Leister, Ray tracing algorithms — Theory and practice, Theoretical Foundations of Computer Graphics and CAD, (R. Earnshaw, Ed.), NATO ASI Series, Vol. F-40, Springer-Verlag, Berlin 1988, pp. 997–1030.

    Google Scholar 

  32. S. Suri and J. O'Rourke, Worst case optimal algorithms for constructing visibility polygons with holes, Proc. 2nd ACM Symp. on Computational Geometry, 1986, pp. 14–23.

    Google Scholar 

  33. R. Tarjan and C. Van Wyk, An O(n log log n) algorithm for triangulating simple polygons, SIAM J. Computing 17 (1988) pp. 143–178.

    Google Scholar 

  34. E. Welzl, Partition trees for traingle counting and other range searching problems, Proc. 4th ACM Symp. on Computational Geometry, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rolf Karlsson Andrzej Lingas

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guibas, L., Overmars, M., Sharir, M. (1988). Intersecting line segments, ray shooting, and other applications of geometric partitioning techniques. In: Karlsson, R., Lingas, A. (eds) SWAT 88. SWAT 1988. Lecture Notes in Computer Science, vol 318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-19487-8_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-19487-8_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19487-3

  • Online ISBN: 978-3-540-39288-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics