Convergence properties of classes of decomposable measures

  • M. Squillante
  • A. G. S. Ventre
  • S. Weber
Fuzzy Mathematics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 313)


Measurable Space Sequence Sequence Decomposable Measure Posable Measure Surable Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Fedrizzi, M. Squillante and A.G.S. Ventre, On the structure of the range of ⊥-decomposable measures, Proc. 11th AMASES Conference, 9–11, Sept., Torino-Aosta, Italy.Google Scholar
  2. 2.
    J. Kampé de Fériet and P. Benvenuti, Sur une classe d'informations, C.R. Acad.Sc.Paris, 269 (1969) 97–101.Google Scholar
  3. 3.
    J.Kampé de Fériet and B.Forte, Information et probabilité, C.R. Acad.Sc.Paris (1967) 110–114.Google Scholar
  4. 4.
    A.G.S.Ventre and S.Weber, Evaluations of fuzzy sets based on orderings and measures, Stochastica, to appear.Google Scholar
  5. 5.
    S. Weber, τ-Decomposable measures and integrals for archimedean t-conorm, JMAA 101 (1984) 114–138.Google Scholar
  6. 6.
    S.Weber, Conditional entropies: a discussion of different concepts, Journées Remoises "Anal.problemes décissionels dans un environment uncertain et imprecis", Reims, 1985.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • M. Squillante
    • 1
  • A. G. S. Ventre
    • 1
  • S. Weber
    • 2
  1. 1.Istituto di Matematica Facoltà di ArchitertturaUniversità di NapoliNapoliItalia
  2. 2.Fachbereich MathematikJohannes Gutenberg UniversitätMainzFed.Rep. of Germany

Personalised recommendations