Skip to main content

VLSI arrays with reconfigurable buses

  • Session 8: Vlsi, Dataflow And Array Processors
  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 297))

Abstract

In this paper we consider mesh connected computers with reconfigurable buses. The architecture consists of N 1/2 × N 1/2 PEs, with PEs in each row and column connected to a shared bus. The buses are partitionable using N 1/2-1 switches embedded on each bus. This provides efficient global communication patterns for a variety of partitions of the mesh connected computer. We illustrate the suitability of the architecture by demonstrating efficient parallel solution to several graph problems and low level vision problems which have low interprocessor communication requirements. Compared to known reconfigurable architectures and other parallel architectures such as mesh of trees and pyramids, the proposed organization has low area requirement and simple switch control while providing fast parallel solutions to several problems.

This research was supported in part by USC Faculty Research and Innovation Fund and by DARPA under coutract F 33615-84-K-1404 monitored by the Air Force Wright Aeronautical Laboratory.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. K. Batcher, ”Sorting Networks and their Applications”, Spring Joint Computer Conference 32, pp 307–314, AFIPS PRESS, Montwole NJ, 1968.

    Google Scholar 

  2. F. Berman, ”Parallel Computations with Limited Resources”, In Proceedings of the Conf. on Information Sciences and Systems, John Hopkins University, 1983.

    Google Scholar 

  3. F. Berman and L. Snyder, ”Parallel Programming and the Pocket Programming Environment”, Computer 17(7):27–36, July 1984.

    Google Scholar 

  4. S. H. Bokhari, ”Finding Maximum on an Array Processor with a Global Bus”, IEEE Transactions on Computers, Vol. C-33, No. 2, February 1984, pp 133–139.

    Google Scholar 

  5. D. Carlson, ”The mesh with a Global mesh: A flexible high speed organization for parallel computation”, Tech. Report, Electrical & Computer Engineering dpt., University of Massachusetts, 1985.

    Google Scholar 

  6. J.E. Cuny and L. Snyder, ”Testing the Coordination Predicate”, Trans. on Computers, C-33(3):201–208, IEEE, March, 1984.

    Google Scholar 

  7. R. Davis and D. Thomas, ”Systolic Array chip matches the pace of high speed processing”, Electronic design, October 1984.

    Google Scholar 

  8. M. J. Duff, ”A large scale integrated circuit image processor”, Proc. IJCPR, 1976.

    Google Scholar 

  9. C. R. Dyer, ”A VLSI pyramid machine for hierarchical parallel image processing”, Proc. IEEE conference on Pattern Recognition and Image Processing, 1981.

    Google Scholar 

  10. D. Gannon and L. Snyder, ”Linear Recurrence Systems for VLSI: The Configurable, Highly Parallel Approach”, In Proceedings of ICPP, pp. 259–260, IEEE, 1981.

    Google Scholar 

  11. P. S. Gopalakrishnan, I. V. Ramakrishnan, L. N. Kanal, ”An Efficient Connected Components Algorithm on a Mesh-Connected Computer”, Tech. Report, Dept of Computer Science, 1985, University of Maryland.

    Google Scholar 

  12. Kye S. Hedlund and L. Snyder, ”Wafer Scale Integration of Configurable, Highly Parallel Processors”, In Proceedings of ICPP, pp. 262–264, IEEE, 1982.

    Google Scholar 

  13. D. S. Hirschberg, A. K. Chandra and D. V. Sarwate, ”Computing connected components on parallel computers”, Communications of ACM, 1979.

    Google Scholar 

  14. J. Ja'Ja' and V. K. Prasanna Kumar, ”Information Transfer in Distributed Computing with Applications to VLSI”, Journal of ACM, Jan. 1984.

    Google Scholar 

  15. J. Ja'Ja', V. K. Prasanna Kumar and J. Simon, ”Information transfer under different sets of protocols”, SIAM Journal on Computing, 1984.

    Google Scholar 

  16. H. T. Kung and C. D. Thompson, “Sorting on a Mesh Connected Computer”, Comm ACM, 1977.

    Google Scholar 

  17. F. T. Leighton, “Parallel computations using Mesh of Trees”, Technical Report MIT, 1982.

    Google Scholar 

  18. R. Miller and Q. F. Stout, “Convexity algorithms for pyramid computers”, Proc. 1984 International Parallel Processing Conference.

    Google Scholar 

  19. R. Miller and Q. F. Stout, “Computational Geometry on a Mesh-Connected Computer”, Proc. 1984 International Conference on Parallel Processing, pp. 66–74.

    Google Scholar 

  20. R. Miller and Q. Stout, “Data Movement techniques for the Pyramid Computer”, SIAM journal on computing, Vol. 16, No. 1, February 1987.

    Google Scholar 

  21. D. Nassimi and S. Sahni, “Data Broadcasting in SIMD Computers”, IEEE Transactions on Computers 1981.

    Google Scholar 

  22. D. Nath, S. N. Maheshwari, P. C. Bhat, “Efficient VLSI networks for parallel processing based on orthogonal trees”, IEEE, Transactions on Computers, 1983.

    Google Scholar 

  23. M. H. Overmars and J. Van Leeuwen, “Dynamically maintaining configurations in the plane”, Proceedings of the 12th Symposium on Theory of Computing, 1980.

    Google Scholar 

  24. V. K. Prasanna Kumar, “Communication Complexity of various VLSI Models”, Ph. D. thesis, Dept. of Computer Science, Pennsylvania State Univ., 1983.

    Google Scholar 

  25. V. K. Prasanna Kumar and C. S. Raghavendra, “Array Processor with Multiple Broadcasting”, Proceedings of the 1985 Annual Symposium on Computer Architecture, June 1985.

    Google Scholar 

  26. V. K. Prasanna Kumar and Mehrnoosh Eshaghian, “Parallel Geometric algorithms for Digitized pictures on the Mesh of Trees organization”, International Conference on Parallel Processing, 1986.

    Google Scholar 

  27. D. Reisis and V. K. Prasanna Kumar, “VLSI Arrays with Reconfigurable Buses”, Technical Report, Computer Research Institute University of Southern California, May 1987.

    Google Scholar 

  28. V. K. Prasanna Kumar and D. Reisis, “Parallel Image Processing on Enhanced Arrays”, Proceedings of the International Conference on Parallel Processing, 1987.

    Google Scholar 

  29. A. Rosenfeld, “Parallel Processors for Image Processing: 2-D arrays and extensions”, IEEE Computer, Jan. 1983.

    Google Scholar 

  30. Y. Shiloach and U. Vishkin, “A O (logN) Parallel Connectivity Algorithm”, Journal of Algorithms 3, 1982.

    Google Scholar 

  31. L. Snyder, “Introduction to the Configurable, Highly Parallel Computer”, Computer 1S(1):47–56, January, 1982.

    Google Scholar 

  32. Q. F. Stout, “Mesh Connected Computers with Broadcasting”, IEEE Trans. on Computers, pp. 826–830, 1983.

    Google Scholar 

  33. S. L. Tanimoto, “A Pyramidal approach to Parallel Processing”, Proc. 1983 International Symposium on Computer Architecture.

    Google Scholar 

  34. L. Uhr, “Algorithm-Structured Computer Arrays and Networks”, Academic Press, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. N. Houstis T. S. Papatheodorou C. D. Polychronopoulos

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reisis, D., Kumar, V.K.P. (1988). VLSI arrays with reconfigurable buses. In: Houstis, E.N., Papatheodorou, T.S., Polychronopoulos, C.D. (eds) Supercomputing. ICS 1987. Lecture Notes in Computer Science, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-18991-2_41

Download citation

  • DOI: https://doi.org/10.1007/3-540-18991-2_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18991-6

  • Online ISBN: 978-3-540-38888-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics