Transport theory for convoy electrons and Rydberg electrons in solids

  • Joachim Burgdörfer
Ion-Solid and Ion-Molecule Collisions
Part of the Lecture Notes in Physics book series (LNP, volume 294)


We give a theoretical overview of the dynamical evolution of excited states near threshold in highly charged ions transversing thin solid targets. We present first results of a classical transport theory for electrons under the influence of both the strong Coulomb field of the projectile and stochastic scattering processes in the solid. The phase-space master equation is studied by solving the associated Langevin equation and using Monte-Carlo sampling methods. Connection is made with the theory of stochastic discrete mappings in nonlinear dynamics. Results on transport properties of convoy electrons through solids, the anomalous attenuation length, Coulomb focussing, defocussing and trapping effects are discussed.


Free Electron Langevin Equation Attenuation Length Projectile Velocity Rydberg Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. Bohr and L. Lindhard, Kgl. Danske Videnskab. Selskab. Mat.-Fys. Medd. 26, No. 12 (1954).Google Scholar
  2. [2]
    I. A. Sellin, et al. in Forward Electron Ejection in Ion Collisions, Lecture Notes in Physics, Vol. 213 (Springer, Berlin, 1984), p. 109.Google Scholar
  3. [3]
    R. Schramm, P. Koschar, H. D. Betz, M. Burkhard, J. Kemmler, O. Heil, and K.-O. Groeneveld, J. Phys. B18, L507 (1985).Google Scholar
  4. [4]
    I. A. Sellin, J. Burgdörfer, S. D. Berry, M. Breinig, H. D. Betz, and K.-O. Groeneveld, J. Phys. B19, L155 (1986).Google Scholar
  5. [5]
    S. D. Berry, S. B. Elston, I. A. Sellin, M. Breinig, R. DeSerio, C. E. Gonzalez-Lepera and L. Liljeby, J. Phys. B19, L149 (1986).Google Scholar
  6. [6]
    H. D. Betz, D. Roschenthaler, and J. Rothermel, Phys. Rev. Lett. 50, 34 (1983) and H. D. Betz in ref. [2].Google Scholar
  7. [7]
    K. Dybdal, J. Sorensen, P. Hvelplund and H. Knudsen, Nucl. Instr. Methods B13, 581 (1986).Google Scholar
  8. [8]
    C. Can, R. J. Maurer, B. Bandong, and R.L. Watson, Phys. Rev. A35, 3244 (1987).Google Scholar
  9. [9]
    K. Dettmann, K. G. Harrison, M. W. Lucas, J. Phys. B 7, 769 (1974).Google Scholar
  10. [10]
    H. P. Hülskötter, J. Burgdörfer, and I. A. Sellin, Nucl. Instr. Meth. B24/25, 147 (1987), and references therein.Google Scholar
  11. [11]
    L. Gulyas, G. Szabo, D. Berenyi, A Köver, K. O. Groeneveld, D. Hofmann, M. Burkhard, Phys. Rev. A34, 2751 (1986).Google Scholar
  12. [12]
    V. Neelavathi, R. H. Ritchie, and W. Brandt, Phys. Rev. Lett. 33, 302 (1974).Google Scholar
  13. [13]
    M. Day, Phys. Rev. Lett. 44, 752 (1980).Google Scholar
  14. [14]
    J. Neufeld and R. H. Ritchie, Phys. Rev. 28, 1632 (1955), A. Mazarro, P.M. Echenique, and R. H. Ritchie, Phys. Rev. B27, 4117 (1982) and references therein.Google Scholar
  15. [15]
    M. Breinig et al., Phys. Rev. A25, 3015 (1982).Google Scholar
  16. [16]
    Y. Yamazaki and N. Oda, Nucl. Instr. and Meth. 194, 415 (1982).Google Scholar
  17. [17]
    Y. Yamazaki and N. Oda, Nucl. Instr. and Meth. B10/11, 161 (1985).Google Scholar
  18. [18]
    J. Burgdörfer and C. Bottcher, to be published.Google Scholar
  19. [19]
    J. P. Crutchfield, J. D. Farmer, and B. A. Huberman, Phys. Rep. 92, 45 (1982);'M. J. Feigenbaum and B. Hasslacher, Phys. Rev. Lett. 49, 605 (1982).Google Scholar
  20. [20]
    J. R. Macdonald and F. W. Martin, Phys. Rev. A4, 1965 (1971).Google Scholar
  21. [21]
    K.A. H. van Leuwen, G. von Oppen, S. Renwick, J.B. Bowlin, P.M. Koch, R.V. Jensen, O. Rath, D. Richard and J.G. Leopold, Phys. Rev. Lett. 55, 2231 (1985); J.G. Leopold and D. Richards, J. Phys. B18, 3369 (1985); J. Phys. B19, 1175 (1986).Google Scholar
  22. [22]
    See e.g., C. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin, 1985) chap. 8.Google Scholar
  23. [23]
    J. Burgdörfer and L. Dubé, Nucl. Instr. Meth. B10/11, 198 (1985).Google Scholar
  24. [24]
    M. Kalos and P. Whitlock, Monte Carlo Methods (Wiley, New York, 1986).Google Scholar
  25. [25]
    J. Ashley, C. Tung and R. Ritchie, Surfac. Sci.81 409 (1979).Google Scholar
  26. [26]
    J.P. Ganachaud and M. Cailler, Surf. Sci. 83, 498 (1979)Google Scholar
  27. [27]
    L. Smrcka, Czech. J. Phys. B20, 291 (1970).Google Scholar
  28. [28]
    see e.g. L. Landau and L. Lifschitz, Lehrbuch der theoetischen Physik, Bd. 1 (Akademie-Verlag, Berlin, 1975).Google Scholar
  29. [29]
    M. Burkhard, H. Rothhard, C. Biedermann, J. Kemmler, P. Koschar, and K.-O. Groeneveld, Nucl. Instr. Meth. B24/25, 143 (1987).Google Scholar
  30. [30]
    J. Burgdörfer, Nucl. Instr. Meth. B24/25, 139 (1987).Google Scholar
  31. [31]
    S. Tougaard and P. Sigmund, Phys. Rev. B25,4452 (1982) and ref. therein.Google Scholar
  32. [32]
    L. Landau, J. Phys. (USSR) 8, 201 (1944).Google Scholar
  33. [33]
    P. Koschar et al., in ref. 2, p. 129.Google Scholar
  34. [34]
    H. H. Andersen and J.F. Ziegler, The Stopping and Ranges of Ions in Matter, vol. 3 (Pergamun Press, New York, 1983).Google Scholar
  35. [35]
    J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975), chapt. 13. [36] see e.g. K. Omidvar, Phys. Rev. 14o, A26 (1965).Google Scholar
  36. [37]
    J. Burgdörfer, in ref. 2, p. 32.Google Scholar
  37. [38]
    X. Yang and J. Burgdörfer, to be published.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Joachim Burgdörfer
    • 1
    • 2
  1. 1.Department of Physics and AstronomyUniversity of TennesseeKnoxville
  2. 2.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations